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Photonics is a promising architecture for the realisation of quantum information processing, since the
two-photon interaction, or non-linearity, necessary to build logical gates can efficiently be realised by the use of
interference with ancillary photons and detection [1]. Although single-photon sources and detectors are pivotal in
realisations of such systems, clear guidelines for the required performance of realistic systems are yet to be
defined. We present our detailed numerical simulation of several quantum optics circuits including sources and
detectors all represented in multi-dimensional Fock-spaces, which allows us to obtain experimentally realistic
performance bounds for these devices. In addition, the single-photon source based on switched parametric down-
conversion is studied, which in principle could reach the required performance. Three approaches for
implementing the switching hierarchy of the photons are simulated, and their anticipated performance is
obtained. Our results define the bar for the optical devices needed to achieve the first level of linear-optics
quantum computing outside the coincidence basis.

Keywords: linear optical quantum computing (LOQC); photon sources; single-photon detectors; quantum optics;
quantum entanglement; numerical simulation of quantum optics

1. Introduction

With scalable linear optical quantum computing being

the long term goal, even the obvious near-term exper-

imental steps such as heralded quantum gates or crea-

tion of entangled states are very interesting applications

for quantum communication, metrology and informa-

tion processing. The performance of linear optical

quantum computing (LOQC) relies on the quality of

the various elements and devices that the system is built

from, such as sources, optical elements and detectors.
The main concepts of LOQC were discovered by

Knill, Milburn and Laflamme (KLM) in 2001 [1],

allowing the near-deterministic performance of a

scalable two-photon gate (e.g. controlled not). Within

a short time, LOQC was further advanced with the

discovery of one-way quantum computing [2], where

the main difficulty is creating the cluster state.

The original idea to create such a state is to perform

KLM-type scalable gates between several photons. But

later, more efficient methods for creating the cluster

states have also been discovered, such as using fusion

gates [3].
All these linear optical quantum computing circuits

are based on the assumption of ideal elements, that is

perfect efficiency of optics, highly efficient and photon-

number resolving detectors, efficiency �1, and perfect

single photon sources, output probability �1. Even

though it has recently be shown that in the asymptotic

limit LOQC could work if the product of the detector

efficiency and the single photon output probability is

greater than 2/3 [4], (or even greater than 1/2 in the

case of pair sources [5]), these striking results are not

too practical as they require photon sources that do

not emit any higher number photon numbers or multi-

photon states, and very broad and complex optical

circuits. A further assumption required for achieving

ideal photon interference quality is that the photon

wave-packets are Fourier limited and spectrally pure,

and that the mode matching of the beams is ideal.

Unfortunately, realistic systems will never allow us to

reach the ideal case. Indeed, there are known levels of

errors for performing the full scale quantum comput-

ing, which however are hard to achieve in the

laboratory.
In this work we revisit the single-photon devices

required for implementing basic LOQC circuits in view

of achieving the next experimental level, i.e. perform-

ing the operations outside the post-selection basis.
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Post-selection is commonly implemented in photon-

experiments to cope with the inefficiencies of devices

such as optical losses by only considering successful

experimental runs, where the desired number of

photons is actually observed. In current experimental

implementations, the optical efficiencies are in the

order of 10% and source efficiencies around 1%,

leaving the ratio of successful to unsuccessful attempts

below 10�6. Therefore, current LOQC experiments

involve only up to six photons, and require extensive

post-selection and long measurement times. If such

circuits could be performed without post-selection,

quantum processing with multiple-photon would gain

significant grounds and much larger numbers of

photonic qubits would become accessible.
In order to understand just how well the single-

photon devices must perform to reach this important
goal, we studied their parameters through numerical
simulation of the envisioned quantum optical circuits;
we included the crucial deteriorating effects such as
multi-photon emissions, optical losses and non-ideal
detection. To some extent, the source and detec-
tor requirements have been addressed for measure-
ment-based quantum computing in [3]; however,
their analysis included huge numbers of sources and
detectors, and some idealisations. Our simulation is
experiment-driven and it aims to obtain and study
accessible parameters and somewhat feasible LOQC
implementations to characterise the sources and
detectors.

2. Numerical simulation of quantum optics

The important feature of our approach was that every
photon mode was treated as an N-dimensional Fock-
space, accounting for several higher-number photon
terms. Accordingly, all operators were implemented as
matrices of dimension N�N obtained by matrix
exponentiation of the interaction Hamiltonians,
requiring significant computational resources for
multi-mode optical circuits.

The numerical model was implemented in the
Matlab environment, based on the quantum optics
toolbox by Sze M. Tan [6]. A collection of functions
and scripts were developed and specifically designed
for studying single photon experiments [7]. In this
model, every photon mode is represented by a Fock-
space of the size N. Each state is a vector, where the
first element corresponds to the amplitude of the
vacuum state j0i, and the last element corresponds to
the amplitude of N� 1 photon state, jn�1i. It is
straightforward to represent a photonic qubit, such as
the polarisation of photons, as a tensor product of two
such Fock-space modes. All operations on the photon

modes must be realised by an unitary evolution matrix,
generated from exponentiation of the corresponding
Hamiltonian. In order to explain how the representa-
tion of quantum states and operators are incorporated
we have given some examples in the Appendix.

2.1. Time discretisation

This model is a monochromatic approximation of our
system, therefore does not accurately incorporate any
time evolution. Even though this might seem a strong
approximation, it is sufficient for general simulation
and analysis of LOQC type experiments. In a typical
multi-photon experiment [8] the photon wave-packet is
as short as 500 fs, whereas the detector electronic
timing resolution is of the order of 500 ps. Hence, the
detectors are essentially integrating the optical field
over their timing resolution. As outlined in [9], it is
possible to treat the entangling operations, such as
two-photon interference, occurring between the vari-
ous photons by only observing the overall behaviour of
the detectable events without needing to describe and
model the concrete and microscopic time evolution,
as long as the generation times of the various photon
are synchronised to a time better than the photon
time envelopes, which is achieved by ultra-short laser
pulses.

In our numerical model, we assume this condition
is satisfied, and therefore the calculations are per-
formed in a time-unit �d corresponding to the detector
timing resolution.

2.2. Photon source

The output of the realistic photon sources are modeled
with terms for single-photons �, and also for the
two-photons !, as follows:

j�i ¼Mð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

j0i þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2
p

j1i þ �!j2iÞ, ð1Þ

with normalisation M. The single-photon performance
of the source will be characterised via the second-order
correlation function at zero time delay, defined as
gð2Þð0Þ ¼ hay

2
a2i=hayai2. The output success probabil-

ity of a source is the probability of finding any
photons in the signal, given be the inverse of finding an
empty output Phrld ¼ 1� h0j�ih�j0i. This description
of the single photon source, Equation (1), has the nice
feature, that the correlation value g(2)(0) is essentially
constant over Phrld. In particular, as this correla-
tion value is an easily measured quality estimator it
is widely used in experimental implementations
of single-photon sources, and it will allow the
direct relation of our simulation results to such
implementations.
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As one realistic implementation of photon sources

we considered heralding photons from parametric

down-conversion (SPDC). This will be discussed in

full detail in Section 4.

2.3. Single-photon detectors

2.3.1. Bucket detector – BD

The first type is the ‘bucket detector’, which will only

give a ‘click’ in the presence of photons, but will not

discriminate between photon numbers. A typical

example for such a detector is an avalanche photo

diode (APD). The probability for a click is calculated

with a projection operator, where the diagonal terms of

the projector matrix take the values

PBDði, iÞ ¼ 1� ð1� �Þði�1Þ, ð2Þ

where i corresponds to the particular photon number

plus one, and the total efficiency � is the product of

the actual detector efficiency �BD with the optical

efficiency �optics to include losses from optical coupling

and the system.
Also of interest is the operator describing an

unsuccessful detection event, ‘no click’, which has the

relevant applications for the suppression of higher-

order terms in two-channel polarisation analysers.

The corresponding projector based on the same

efficiency as above, has the diagonal elements:

�PBDði, iÞ ¼ ð1� �Þ
ði�1Þ: ð3Þ

These operators for successful detection and non-

detection of photons are the important tools required

to simulate the evolution of the quantum states and

expectation values of measurements.

2.3.2. Single-photon sensitive detector – SPD

The more important type of photon detector for

LOQC has the ability to discriminate photon numbers.

Here we focus on the detection of one-and-only-one

photon; hence named a single-photon detector (SPD).

These are modelled as an operator matrix with the

diagonal elements according to the probability of

obtaining a positive detection signal for a given input

photon state, which for a given total efficiency � has

the following diagonal terms:

PSPDði, iÞ ¼ ði� 1Þ�ð1� �Þði�2Þ, ð4Þ

as well as the the No-Click-projector

�PSPDði, iÞ ¼ ð1� �Þ
ði�1Þ, ð5Þ

where as above, the efficiency is � ¼ �SPD��optics,
the product of the intrinsic detector efficiency and
the optical system, and i ranges from 1, . . . ,N.

2.3.3. Noise and saturation of the photon detectors

In addition to the main deficiency of detectors, which
is the limited efficiency, they also show error detections
due to dark counts. This describes the behaviour of
detectors to give false detection events, even if no signal
is present. We model this by adding a constant term �d,
corresponding to the probability of a noise-induced
detection signal per time unit �d, to each element of the
detector’s operator:

Pndetði, iÞ ¼ Pði, iÞBD=SPD þ �d: ð6Þ

Generally, one must take care that the final calculated
probability for a detection will in general not be
continuous, but rather must also include a maximal
cutoff at unity, which actually corresponds to satura-
tion of the detector. The probability for a detection
event would then be limited to unity in the following
relation P ¼ maxðTrðPndetj�iÞ, 1Þ. It is straightforward
to see why this should be correct: in the case of a unit
efficiency detector with a dark count probability �d, the
final detection probability of a signal will be offset by
this amount, until the level of unity is reached and the
detector saturates. However, in all practical cases that
are considered here, the detection probability per time-
unit is significantly less than unity, and therefore this
cutoff must not be implemented.

In the case of the No-Click projector we subtract �d
from each term; however, it must be ascertained that
none of the values becomes negative. More practically
in actual experiments, the dark count rate can be
efficiently decreased by an appropriate time gating,
triggered, for instance, by the main pump laser.

3. Simulation of LOQC circuits and the results

With the numeric modelling of quantum optics in place
we were able to conduct a series of simulations on
interesting linear optical quantum circuits. The chosen
small selection is representative for both the existing
experiments – non-scalable gates that operate in
post-selection – as well as for the next steps towards
future implementations of LOQC – scalable gates, that
do not require post-selection. What is unique in our
approach is that we aimed to follow the practical
experimental implementation for the studied quantum
circuit, as well as the actual methods for generating
single photons from cascaded down-conversion and
non-perfect single-photon detectors.
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3.1. C-Phase gate – non-scalable scheme 1

We simulate the creation of Bell-pairs of photons
(see Figure 1(a)) which is easily achieved by making
two photons interfere on a partial polarising beam-
splitter (PPBS), which acts as a controlled-phase
(c-phase) gate [10]. This is non-scalable operation, as
it can only work in post-selection meaning that the
desired photon state is extracted by detection of
the photons. This scheme can, in general, not be
concatenated to implement more complex operations,
except in few very special cases as illustrated in
the next section. The quality of the output is assessed
via the violation of the Bell-pair witness [11], as well as
the Clauser-Horne-Shimony-Holt-inequality (CHSH-
inequality) violation [12].

We find from the simulation that in this case
the involved single photon sources must show a
g2(0)-correlation less than 0.15 in order that a Bell-
inequality can be violated, and less than 0.39 in order
to satisfy the Bell-state witness [13]. Due to post-
selection, the actual detection efficiency and the success
probability of the setup are not fundamental issues as
they only affect the achievable count rate but not the
quality of the output.

3.2. Two C-Phase gates – non-scalable scheme 2

By chaining two of the above-mentioned non-scalable
c-phase gates (Figure 1(b)), it is possible to entangle

three photons into a Greenberger-Horne-Zeilinger-
state (GHZ). As was the case of just one c-phase
gate, this circuit can only work in post-selection and is
therefore not scalable. We reconstruct the value of the
witness for a GHZ state [13] from our simulation as
the quantitative criterion to assess the performance of
the entangling operation.

Our simulation shows that the required quality of
the single-photons must be to proved an output with a
g2(0) correlation less than 0.06, which is already a
huge challenge to achieve. Also in this case, the
efficiency of the detectors and of the source only
affects the count rate.

3.3. KLM-type gates – scalable scheme 1

In order to achieve bounds for the next important step
towards LOQC, we simulated the heralding of Bell-
pairs with KLM-type gates. Thereby, the control and
target photons interact via the assistance (effectively
two-photon interferences) of two ancillary photons.
The final detection of the ancillary photons flags a
successful run of the gate, and the control and target
photon are retrievable – and reusable – from their
outputs. These gates are fully scalable and can build
arbitrary circuits. It is important to note that these
gates require single-photon resolving detectors.

We focused our simulation in particular on
the simplified KLM-gate [14] (Figure 2(a)). We
also studied the cases of the Knill-gate [15] and the

Figure 1. Schematics of the two post-selective (and therefore non-scalable) quantum circuits that were studied here. (a) Post-
selective implementation of a c-phase gate, used to create a Bell-pair of photons; (b) scheme of concatenated c-phase gates for
creating Greenberger-Horne-Zeilinger (GHZ)-triples of photons. (The colour version of this figure is included in the online
version of the journal.)
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Pittman-Franson-gate [16]. We observed that the

former has performances nearly identical to the KLM

gate. Concerning the latter, this is harder to implement,

as it requires a Bell pair as an ancilla; this demands

either a deterministic entanglement source or a KLM

gate on its own.
In order to test the operation of the gate we

chose to follow exactly what a possible experimental

situation would be in order to prove that this gate

was successfully realised: we observed the pair-wise

correlations of the output photons for the Clauser-

Horne (CH) inequality [17], which explicitly excludes

post-selection in the measurements or analysis.

In addition, we also studied the witness for a Bell-state.

A good way of presenting the photon-source
requirements is to plot of their performance in terms
of g(2)(0)-correlation as well as the success probability
for heralding a single photon (see Figure 3) 1-KLM
plots. Summarising all the simulation results becomes
very cumbersome, as many parameters in the simula-
tion are varied, and extracting the actual interesting
information is hard for the reader. Here, as can be
seen in the figure, the total system efficiency
(i.e. opticsþ detectors) becomes crucial. Only at the
total system efficiency above �¼ 0.9 and single-photon
resolving detection does the simplified-KLM-gate per-
form in a useful manner. In this case, to give concrete
numbers, if the probability for the source
to herald single photons is 0.8 then the requiblack
g2(0)-correlation must be below 0.03 in order to violate
the CH-inequality. Notably, satisfying the Bell-state
witness can only be achieved if the probability for the
source to herald single photons is above 0.9, then the
g2(0)-correlation may become as high as 0.045.
The source requirements do become relaxed if the
system-detection efficiency is higher than 0.9.

3.4. One-way quantum computing – scalable
scheme 2

Cluster-state quantum computing can be efficiently
realised if a source of heralded GHZ-entangled pho-
tons is available. There are many approaches to
directly creating such states, however, LOQC itself
offers the possibility to generate a heralded GHZ
state by fusing two Bell-pairs created from separate
KLM-gates, as outlined in [3] (Figure 2(b)). The
fusion-operation is in the interference of two-photons
on a beam-splitter and detection of exactly one photon
in one output arm. The resulting GHZ-entangled state
of the three photons is tested against a Mermin-type
inequality [18] and a GHZ-state witness [13].

The simulation of this scenario became very
resource-hungry, since the total amount of modes is
rather large. The main outcomes from the simulations
clearly show that this scenario will also be very
challenging to realise. The total detection efficiency �
should be at lest 0.95, and the requirements for the
photon-sources are tight, asking for a probability
for heralding output photons Phrld4 0.97 and the
g2(0)-correlation of 0.01. Reaching such requirements
will be very challenging for any optical systems.

4. Generating single photons

These simulations have provided the baseline for
the requirements that such LOQC circuits pose on
photon-sources and photon-detectors. In the following

Figure 2. Schematics of the simulated scalable-LOQC
circuits. (a) Scalable linear optical gate called the simpli-
fied-KLM-gate (inset), utilised to create heralded Bell-pairs
of photons form the initially separable input photons.
The successful operation of this gate is flagged by the
detection of the two ancillary single photons in their outputs.
The quality of the gate is observed by testing the CH-Bell-
inequality on the entangled photons, which does not allow
for any post-selection on the output states. (b) As the first
level of the one-way quantum computing with cluster states
the direct and heralded generating of a three-photon GHZ
state is studied. GHZ-states are created from two heralded
Bell-pairs generated in the simplyfied-KLM-gate, connected
via a type-I Fusion gate. (The colour version of this figure is
included in the online version of the journal.)
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it will be studied, if, and how, a single-photon source
based on parametric down-conversion might be able to
reach these challenging parameters.

The present most important source for multiple
and entangled photons is spontaneous parametric down
conversion [19], which is essentially the spontaneous
emission from an optical parametric amplifier, also
referred to as a squeezed vacuum. When observing the
two output modes of the squeezer, photons are
produced in pairs, and therefore the correlations are
sub-Poissonian, and therefore enable conditional single-
photon experiments. However, given the non-deterministic
behaviour of this interaction, the photon-state created from
SPDCproduces not only single photon-pair terms, but also
multiple numbers of photon-pairs.

4.1. Modelling of SPDC

The Hamiltonian that describes the interaction in
SPDC is the simplified squeezing operator, which has

the approximation of a strong pump mode, and acts on
two output modes a1,a2 in the form

HSPDC ¼ �ða
y

1a
y

2 þ a1a2Þ, ð7Þ

where � is the squeezing parameter. The evolution of
this Hamiltonian is calculated via matrix exponentia-
tion. Obviously, our numerical model takes account of
all higher order photon number terms with their full
and correct amplitude, which can then easily be
propagated through any quantum circuits simulation,
such as logic gates.

4.2. Heralding photons from SPDC

Based on the SPDC state produced from squeezing, we
want to study in detail the quality of heralded single
photon states achieved by detecting one mode from the
SPDC source, and correspondingly heralding a single
photon in the other. Given the strict photon pair
correlations imposed by the squeezing operator,
this could deliver perfect single photons, if it would
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Figure 3. Numerical results of source and detector performance requiblack to achieve performing simple LOQC circuits without
post-selection. 1-KLM denotes the calculation where two photons are entangled into a Bell-state via one simplified Knill-
Laflamme-Milburn gate; 2-KLM denotes the operation where two such Bell-states are fused, and a 3-photon GHZ state is
created. The vertical axis is the second-order correlation of the photon source beams, g2(0) at zero time delay. The horizontal axis
is the probability that the involved photon sources do fire upon a trigger and herald a photon signal, Phrld. The simulations where
performed assuming total efficiencies (optical and detectors) between �¼ 0.90, 0.95, 1.00, coded in blue, green and black. The
simulation showed that the total efficiency must be greater than about �¼ 0.9 to deliver useful results in the 1-KLM case, and
above �¼ 0.95 for the 2-KLM case. (The colour version of this figure is included in the online version of the journal.)
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not be for the higher order emissions. Various combi-

nations and parameters of the heralded photons are

modelled, and the produced state is analysed. Since the

detection process on the trigger photon corresponds, at

least in principle, to a photon number measurement,

the remaining photon is no longer in a superposition of

number states, as originally given by the SPDC. Now it

is actually a density matrix, which is represented as an

array of number states weighted with amplitudes

corresponding to the correct probability. In Figure 6

(1-SPDC), the variation of g(2)(0) correlation versus the

probability for heralding a photon are shown as the

important characteristics of the created photon state,

in dependence of the squeezing parameter � for one

SPDC source.
The output state from SPDC is generated from acting

the operator on vacuum, USPDCj0, 0ia1,a2 , which yields:

jSPDCi ¼ C0j00ia1,a2 þ C1j11ia1,a2 þ C2j22ia1,a2 þ . . . :

ð8Þ

the detection on the photon of side a1 with a photon

detector gives us the conditional output state on

side a2, leading to a mixture of photon number

states, which can potentially be closer to an ideal

single photon:

�heralded1 ¼ Tra1ðPBDa1 jSPDCiÞ ð9Þ

¼

n
Qj0ih0ja2;P1jC1j

2j1ih1ja2;P2jC2j
2j2ih2ja2; . . . :

o

ð10Þ

where P1,P2, . . . are the detection probabilities for a

‘click’, as defined in expression 2, the C1,C2, . . . are the

amplitudes of the terms from the SPDC state, and

Q ¼ 1�
P

PijCij
2, is the probability of not finding a

trigger detection event in mode a1, or the vacuum term.

The quality of one such heralded single photon state is

measured as the g(2)-correlation function [20], versus

the probability for obtaining a successful heralding

event. It is evident that heralded photons from SPDC

are far from being useful for LOQC, as they are far

from the required performance. In particular, the

strength of the SPDC must be kept sufficient low

such that the detection probability of the trigger is
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Figure 4. Combination of the results from the numerical simulations of the LOQC with the single photon source from SPDC.
The many superimposed plots in the right corner show the are of interest that is required to be reached by a good single-photon
source. The data named 1-SPDC corresponds to a photon source based on heralded photons created from spontaneous
parametric down-conversion, heralded with either a bucket detector (BD) with efficiency �¼ 0.8 or a single photon detector
(SPD) with �¼ 0.95. The switch for the SPDC photons is a binary switch, assuming each level has an transmittance of 0.98, and
in addition, the coupling efficiency of the entangled photons is 0.98 each. The curve labelled n-SPDC shows the performance for
photons generated from the switching of multiple SPDC sources. The parameter of the source curves is the squeezing parameter
of the SPDC process. The faint plots on the lower right corner are the requirement data for achieving KLM-type operations
outside the coincidence basis (see Figure 3). In addition, the graph contains the thresholds for post-selective circuits such as
creating a Bell-pair or a GHZ-triplet. In these cases the probability of the source, Phrld to generate a photon signal has no effect
on the threshold. It is obvious, that photon sources based on heralding from one SPDC (1-SPDC) will never reach the areas of
performance required for post-selection free LOQC operations. (The colour version of this figure is included in the online version
of the journal.)
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below 0.1 in order maintain a single photon purity of
better than 90% (see the 1-SPDC plots in Figure 6). If
the squeezing parameter, � becomes to large, then the
single-photon quality is drastically deteriorated.

The best approach in improving the output quality
from from SPDC is to ‘chain’ several such sources with
active switches [21,22], see Figure 4. Thereby, several
probabilistic sources are effectively combined into one
deterministic source, which in principle can be made
arbitrarily close to the ideal case. It is straightforward
to study the characteristics of this switched SPDC
source into the model, by keeping the squeezing
parameter � fixed at a certain value, and varying the
number S of SPDC sources that are combined.
The heralded state is obtained from the original
heralded single photon state, and yields

�heraldedS ¼
n
QSj0ih0ja2;

ð1�QSÞ

ð1�QÞ
P1jC1j

2j1ih1ja2;

ð1�QSÞ

ð1�QÞ
P2jC2j

2j2ih2ja2; . . . :
o
: ð11Þ

From the analysis shown in Figure 6 it is clear that this
type of heralding source outperforms a standard SPDC
scheme, even at modest squeezing parameters and
number of sources equal to four. In fact, this type of
source may constitute a viable single photon source,
given that other quantum systems such as quantum
dots [23,24] or single stored ions [25] face the challenge
of achieving good coupling efficiencies.

4.3. Considering losses in the switches

In any practical implementation of the SPDC-switch
schemes the total losses will scale with the amount of
input modes that should be accommodated. The
schemes shown in Figure 4 each have their advantages
and disadvantages, however, it is crucial that they
allow a scalable operation at all. Scheme A is the most
efficient, as each photon only passes through one
switch before entering the output mode. Therefore, the
overall system losses are constant, and do not change
with the number of sources. Scheme B is also very

(a)

(b)

(c)

Figure 5. (Left) Heralding single photons from N spontaneous parametric down conversions (SPDC), each pumped by tightly
synchronized ultra short pump pulses. Depending on the trigger detection modes a1, . . . , an, the corresponding signals from
modes b1, . . . bN are switched to the output. (Right) Depicted are three main architectures for implementing the routing switch.
(a) One linear mode-switch, (b) binary coded mode-switches, (c) interferometric multi-port with phase modulators. The number
of optical components in each photon path depends on the variant and therefore the loss will have fundamentally different
scaling with the number of input modes N. (The colour version of this figure is included in the online version of the journal.)
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efficient, and consists of a cascade of binary switches.
The amount of elements each photon must passage is

on scales with the logarithm of the number of sources,
log2 (N). Finally, scheme C is a multi-input interfer-
ometer, with N inputs and 1 output, where the inputs

are routed interferometrically to the output, e.g. via
active phase changes. The interferometer follows the
generalised rules for multi-ports [26], where, of the
order of N2 optical elements, including beam-splitters

and phase shifters, can realise any unitary operation.
From our simulation we obtained the probability

for heralding a single-photon output versus trigger
probability, for an increasing number of SPDC

sources, see Figure 5. These results clearly show that
a linear (scheme A) or binary (scheme B) arrangement
of switches can be useful for generating single-photon
states sufficient for LOQC, whereas the multiport type

(scheme C) of switch will fail due to the scaling of
losses with additional switching layers.

5. Conclusions

We described a numerical simulation of the quantum
optics of LOQC, specifically tailored to obtain the
characteristics of single-photon sources and photon

detectors required to perform quantum computing
operations in actual experiments.

First, we studied the heralding of Bell-pairs with
scalable KLM-gates [1] where two photons, the control
and target, are entangled via the assistance and
detection of two ancillary photons. These gates are
fully scalable and could be combined into arbitrary
quantum logic. The operation was verified by testing
the correlations of the output photons against the CH
inequality [17], without post-selection.

Secondly, we simulated the creation of heralded
Greenberger-Horne-Zeilinger (GHZ) states via
fusing [4] two Bell-pairs created with separate KLM-
gates as the first building block of a cluster-state
quantum computer [2]. The resulting GHZ state was
tested via a Mermin-type inequality [18] and a GHZ-
state witness [10], all without post-selection.

Our results show that performing LOQC opera-
tions outside the post-selection basis requires photon-
detectors with efficiencies of about 0.90, single-photon
sources with a success probabilities close to 0.90 and
single-photon purities (g(2)-correlation function) better
than 0.07, as a guideline. These performance levels will
be challenging to reach in real systems, but not
impossible in our view. We compare these require-
ments with performance of state-of-the-art single
photon sources based on down-conversion and cas-
caded down-conversion, as well other implementa-
tions. Our study is the first to establish precise
guidelines for developing single-photon devices in
respect of the implementing optical quantum process-
ing applications.
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Appendix

Examples of states and operators represented in the
numerical model

Quantum states are modelled as vectors, where each element
is considered as the amplitude of this particular excitation.

Therefore, all elements of the vectors and operators must
obey the normalisation rules.

For example (for the dimension of the Fockspace N¼ 4),

the vacuum state is a vector with amplitude on the first

element

>> vacc
vacc=Quantum object
Hilbert space dimensions [4] by [1]

1
0
0
0

Consequently, a single photon state is represented as the

following vector:

oneph=Quantum object
Hilbert space dimensions [5] by [1]

0
1
0
0
0

And the state that describes a superposition of vacuum

and one photon has the form:

>>  1/sqrt(2)*(vacc+oneph)
ans=Quantumo bject
Hilbert space dimensions [4] by [1]

0.70711
0.70711

0
0

In this model, any operator acting on a single mode

(such as the creation or annihilation operators, phase shifter)

are represented as N*N matrices. Consequently, interaction

Hamiltonians are expressed in the form of creation and

annihilation operator matrices (example with N¼ 4):

a=Quantum object
Hilbert space dimensions [4] by [4]

0 1 0 0
0 0 1.4142 0
0 0 0 1.7321
0 0 0 0

>> a’
ans = Quantum object
Hilbert space dimensions [4] by [4]

0 0 0 0
1 0 0 0
0 1.4142 0 0
0 0 1.7321 0

and the unitary evolution is obtained through exponentiation

Ubs ¼ expmð�i�HbsÞ.

The extension ot a higher number of modes is realised by

attaching the two (ormore) modes through the tensor product:

>> tensor(oneph,vacc)
ans=Quantum object
Hilbert space dimensions [5 5] by [1 1]

(6,1)       1

As an example, the operator representing a 50:50 beam-

splitter, which is a two-mode operator, is aN2�N2 matrix. It is

based on the two-mode Hamiltonian

Hbs ¼ �ða
y

1a2 þ a1a
y

2Þ: ð12Þ
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As an example, this looks as follows:

%Beam splitter 50:50=Quater wave plate @45
eta=1*pi/4;
H_bs=(tensor(a,a’)+tensor(a’,a))*eta;
U_bs=expm(-1i*H_bs);

>>  U_bs
U_bs=Quantum object
Hilbert space dimensions [5 5] by [5 5]

(1,1) 1
(2,2) 0.70711
(6,2) 0 - 0.70711i
(3,3) 0.5
(7,3) 0 - 0.70711i

(11,3) -0.5
(4,4) 0.35355
(8,4) 0 - 0.61237i

(12,4) -0.61237
(16,4) 0 + 0.35355i
(5,5) 0.25
(9,5) 0 - 0.5i
............

Density matrices are also represented as matrices, and

also can be subject to tensor-products, evolution with

operators as well as detections. For example, the single

photon state will have a density operator of the form:

>> oneph*oneph’
ans=Quantum object
Hilbert space dimensions [4] by [4]

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0.

And as for the example of the equal superposition of the

vacuum state and one photon, the density matrix takes

the form:

>> sup=1/sqrt(2)*(vacc+oneph);
>> sup*sup’
ans=Quantum object
Hilbert space dimensions [4] by [4]

0.5 0.5 0 0
0.5 0.5 0 0

0 0 0 0
0 0 0 0.

This can also be represented in the form of Ket and Bra,

>> display_state4(N,sup)

ans=

’Purestate=
0.707*’

’|0,> 1.000 ’
’|1,> 1.000 ’

Single-photon detectors

We give examples of the concrete representation of

single photon detectors. The operator for a Bucket-

detector, with efficiency of 0.6, a noise factor of 0.001

has the form:

>> [bdbd_n]=BucketDetector_noise(N,0.6,0.001)
bd=Quantum object
Hilbert space dimensions [4] by [4]

0.001 0 0 0
0 0.601 0 0
0 0 0.841 0
0 0 0 0.937

bd_n=Quantum object
Hilbert space dimensions [4] by [4]

0.999 0 0 0
0 0.399 0 0
0 0 0.159 0
0 0 0 0.063

where bd is used to calculate the probability for obtaining

a detection event, and bdn the probability for not obtain-
ing a detection. The actual probabilities for the detec-

tion of a photon are obtained by taking the expectation
value of the detector matrix with the respected quantum

state.
For our example with the previously defined operators bd

and bdn, the actual probabilities for observing a Click or a
Non-Click for a one-photon state, oneph, are easily com-

puted as expectation values:

>> (oneph’*bd*oneph)
ans=Quantum object
Hilbert space dimensions [1] by [1]

0.601

>> (oneph’*bd_n*oneph)
ans=Quantum object
Hilbert space dimensions [1] by [1]

0.399.

Modelling spontaneous parametric down-conversion

The evolution of the Hamiltonian in equation 7 which
describes SPDC, can be calculated via matrix exponentiation,

USPDC ¼ expmð�iHÞ, which for example takes the form

(N¼ 4, �¼ 0.4) :

%SPDC in chi2:
H_chi2=(tensor(a,a)+tensor(a’,a’))*epsilon;
U_chi2=expm(-1i*H_chi2);

%SPDC input state for pair of photons in HH
spdc_state=U_chi2*tensor(vacc,vacc);

U_chi2=Quantum object
Hilbert space dimensions [4 4] by [4 4]

(1,1) 0.925
(6,1) 0 - 0.35162i

(11,1) -0.13218
(16,1) 0 + 0.057186i
(2,2) 0.85635
(7,2) 0 - 0.4525i

(12,2) -0.2488
(3,3) 0.76945

(8,3) 0 - 0.63871i
(4,4) 1
...
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It is straightforward to calculate the state produced by
the SPDC operator, by multiplying this operator matrix with

a given input state, in this case a vacuum (i.e. j0i ¼
½1, 0, 0, 0�), jSPDCi ¼ USPDC�tensorð½1, 0, 0, 0�, ½1, 0, 0, 0�Þ,
giving the output state of the down-converter:

spdc_state=Quantum object
Hilbert space dimensions [4 4] by [1 1]

(1,1) 0.925
(6,1) 0 - 0.35162i

(11,1) -0.13218
(16,1) 0 + 0.057186i

where the (1,1) term corresponds to j00ia1,a2 output, the (6,1)
term corresponds to j11ia1,a2 , (11,1) corresponds to j22ia1,a2

and so on. Expressed with Kets representing the photon

number, the SPDC state has the following form:

>> display_state4(N,spdc_state)

ans=

’Pure state=
0.925 * ’

’|0,0,> 1.000 ’
’|1,1,> 0.000-0.380i ’
’|2,2,> -0.143 ’
’|3,3,> 0.000+0.062i ’.
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