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Abstract: Many applications in optical quantum information processing
benefit from careful spectral shaping of single-photon wave-packets. In this
paper we tailor the joint spectral wave-function of photons created in para-
metric downconversion by engineering the nonlinearity profile of a poled
crystal. We design a crystal with an approximately Gaussian nonlinearity
profile and confirm successful wave-packet shaping by two-photon interfer-
ence experiments. We numerically show how our method can be applied for
attaining one of the currently most important goals of single-photon quan-
tum optics, the creation of pure single photons without spectral correlations.
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Spontaneous parametric downconversion is a nonlinear optical process in which a photon
from a pump laser, incident on a nonlinear birefringent crystal, converts into two single pho-
tons under conservation of energy and momentum. Photon sources based on this phenomenon
are an ubiquitous tool for quantum computation [1], quantum communication [2] and quantum
metrology [3, 4]. They are also becoming increasingly important in more specialised applica-
tions such as quantum imaging [5], quantum lithography [6] or optical coherence tomography
[7]. As these experiments evolve, more stringent requirements are placed on the characteristics
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of the quantum state of emitted light. In particular, to produce high-purity heralded, or even
near deterministic single photons, the spectral shape and correlations of the created photon
pairs must be carefully engineered.

The most common method for spectral engineering is filtering, however, this can lead to
loss and mixing. A more sophisticated method involves shaping the spectrum at the source.
Consider downconversion in a quasi-phasematched (QPM) crystal with a poling period Λ [8],
where the crystal domain is inverted whenever the pump and downconversion fields acquire a
phase mismatch Δk=2mπ/Λ—where m is an odd integer—allowing phase-matching of a wide
range of wavelengths in different nonlinear materials. There are several methods to control the
joint spectral amplitudes of photons created in downconversion in a QPM crystal [8, 9]. For
example, imposing a linear chirp on the poling period Λ has been used for the generation of
ultra-broad-spectrum, top-hat shaped photons [7] for optical coherence tomography. However,
the currently known methods involve changing Λ, which may be incompatible with stringent
phasematching conditions.

In this paper, we consider type-II downconversion in a QPM crystal with a longitudinally
non-uniform grating. We can synthesise photon pairs with arbitrary spectral amplitudes by
modulating the nonlinearity profile χ(z) of a crystal through different-order poling without
changing the phase-matching conditions. We tailor a spectral photon-pair amplitude with an
approximately Gaussian profile, which is critical for high purity photon generation, as we will
discuss later. In addition, Gaussian spectra are known to be optimal for temporal mode match-
ing [10]—a critical consideration in any experiment involving single photons.

Theoretically, the two-photon component of the optical state is described by [11]

|ψ〉 =
∫ ∫

dωidωs f (ωi,ωs)â
†
i (ωi)â

†
s (ωs)|0〉, (1)

where f (ωi,ωs) = α(ωi+ωs)Φ(ωi,ωs) is the joint spectral amplitude of the created photons in
the idler and signal modes respectively (for details, refer to Appendix A). The spectral proper-
ties of downconverted photons can be manipulated via the pump envelope function α(ωi +ωs)
[13], or as we show here, the phase matching function (PMF) Φ(ωi,ωs). We use a monochro-
matic pump α(ωi +ωs) = δ (ωi +ωs −μp) where μp is the pump frequency, and directly tailor

Φ(ωi,ωs) =
√

2π
∫ ∞

−∞
χ(z)e−iΔk(ωi,ωs)zdz, (2)

which is the Fourier transform of χ(z) and Δk is the phase mismatch.
According to equation 2, the phase matching function of a standard crystal with a uniform

nonlinearity profile is Φ(ωi,ωs) = sinc(ΔkL/2). However, to generate a Gaussian phase match-
ing function, we require a crystal with a Gaussian nonlinearity. While it is non-trivial to directly
change the material properties, we can make use of higher-order poling to realise a variety of
nonlinearity strengths. In a poled structure, the effective nonlinearity scales with the poling or-
der m as χeff=2χ/πm. For odd m, mth order QPM can be achieved by reversing the direction of
the poling every m coherence lengths, defined as Lc = Λ/2. Even-order QPM can be achieved
by combining two odd orders.

We exploited this feature to design a crystal consisting of a number of discrete sections, each
with a different χeff, discretely approximating the desired Gaussian shape, and custom-poled
a 10 mm long Potassium Titanyl Phosphate (cpKTP) crystal accordingly. Details on the actual
design of our tailored crystal can be found in Appendix B. Our technique decreases the overall
nonlinearity and reduces the effective length of the structure, Appendix C. We therefore expect
less photon-pair yield and broader bandwidths when compared to a standard periodically poled
KTP (ppKTP) with the same length and phase-matching.
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Fig. 1. a) Nonlinearity profile for the cpKTP crystal χT(z) (orange line) and target
Gaussian profile χG(z) = exp(−(z/Leff)

2/γ) (black dashed line) with effective length
Leff = 5.67mm (green dot-dashed line) and γ ≈ 0.193 (see Appendix C). b) Phase-matching
function amplitudes and intensities (inset) for the cpKTP (orange line) compared to a pp-
KTP of the same effective length Leff (green dot-dashed line) and target Gaussian profile
ΦG(ωi,ωs) = exp(−γ(ΔkL/2)2) (black dashed line). c) Magnified image of part of the
custom-poled KTP crystal. Vertical lines separate sections with constant effective nonlin-
earity, with their poling order m, length L and poling duty cycle D. d) Magnified view of the
transition from poling order m=1 to m=2 [12]. Due to a slight mismatch between design
and actual domain lengths, the crystal was shortened by a few tens of μm on one side.

Figure 1(a) shows the tailored nonlinearity profile χT(z), defined in Eq. (7) in Appendix
B, together with the target Gaussian profile χG(z). The corresponding PMF, obtained from the
inverse Fourier transform of χT(z), is very similar to a Gaussian function, as shown in Fig. 1(b).
Compared to the sinc-shaped phase matching function of a ppKTP of the same effective length
as the cpKTP (5.67 mm), the side lobes on either side of the central peak are significantly
suppressed. This becomes even more evident when considering the spectral intensity (see inset).

A microscopic image of part of the custom-poled KTP (cpKTP) crystal is shown in Fig. 1(c).
One can clearly see the individual sections with different poling orders, which line up with the
theoretical design almost perfectly. Figure 1(d) shows a magnified view of a transition between
poling-order sections m=1 and m=2.

We tested our custom-poled crystal in a typical downconversion setup, see Fig. 2(a), com-
paring it to a 10 mm long ppKTP crystal (Λ=10.95 μm). Due to the reduced overall effective
nonlinearity, we expect a relative photon pair rate of 34.4%. The measured rate (detected with-
out a beam-splitter) was ∼10 kpairs/s for the custom-poled and ∼33 kpairs/s for the standard
crystal, respectively. This corresponds to a relative yield of ∼ 30.4%; we attribute the small re-
duction in efficiency to the fact that the custom-poled crystal, in contrast to our standard crystal,
was not anti-reflection coated.

We verified the spectral amplitude of bi-photons created in the cpKTP in a two-photon in-
terference experiment. When two indistinguishable photons mix on a symmetric beamsplitter,
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Fig. 2. a) Experimental scheme. The crystals (cpKTP, ppKTP) were temperature-stabilised
(TEC) and pumped by a 410 nm, grating-stabilised diode laser. The emitted orthogonally
polarised photon pairs were split at a polarising beamsplitter (PBS) and coupled into single-
mode fibres equipped with polarisation-controllers (POL). They were then superposed at
a 50/50 fiber beamsplitter (BS) and detected in coincidence. We obtained two-photon in-
terference patterns by changing the delay Δt with a motorised translation stage. The only
filters in use were two RG715 long-pass filters (LP). b) Two-photon interference patterns
for the cpKTP (red circles) compared to a standard ppKTP (green diamonds). The solid
lines show the theoretical values, calculated from the respective PMF for each crystal. The
reduced chi-square values of these fits are 3.07 and 5.51, respectively. The dashed lines
show least-square fits of a triangular pattern to the tailored crystal data and a Gaussian fit-
ted to the normal crystal, with reduced chi-square values of 50.59 and 23.10, underlining
the strong divergence from these shapes. c) Spatial quantum beating for various center-
frequency detunings Δω = ωi −ωs. The lines show the ideal values, calculated from the
respective PMF. All probabilities pc for b) and c) were obtained by normalising detected
pairs to twice the averaged counts outside the coherence length. The only free parameter
for theory values was the interference visibility of ∼ 95%. All error bars are smaller than
symbol size.

they will always be found in the same output port. This phenomenon was first reported in the
landmark experiment by Hong, Ou and Mandel [14], who observed a dip in the photon-pair
detection probability as a function of the temporal delay between the input photons. Theoreti-
cally, the shape of this coincidence dip assumes the inverted Fourier transform of the absolute
square of the PMF, which can be readily calculated from the two-photon state in Eq. (1), see
[14].

The recorded interference patterns for the cpKTP, and the standard ppKTP are shown in
Fig. 2(b), along with the theoretical interference patterns calculated straight from the PMFs in
Fig. 1(b). The bandwidth difference results from the different effective lengths of the two crys-
tals. The interference pattern for the standard crystal is triangular, just as expected for the sinc-
shaped PMF [15]. The pattern for the custom-poled crystal departs from the triangular shape
and indeed approximates a Gaussian. The interference visibility was ∼ 95% for both crystals,
confirming that the indistinguishability of the downconverted photons was not compromised by
the crystal modulation.

To further explore the underlying spectral correlations in the PMF, we measured spatial quan-
tum beating patterns. We detuned the center frequencies of the downconversion photons via
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a change in crystal temperature away from its optimal value for collinear, degenerate quasi-
phasematching and again observed two-photon interference [15]. The results in Fig. 2(c) show
that the custom-poled crystal exhibits less distinct beating, in particular, less anti-bunching,
i.e. coincidence probability values above the random level of 0.5. The maximum value for the
cpKTP was 0.546± 0.005 compared to 0.586± 0.003 for the standard crystal, a significant
reduction relative to the base-line of 0.5. The theory values for the ppKTP were adopted from
[15] directly. For the cpKTP we repeated the calculation in [15] using the respective custom
PMF shown Fig. 1(b).

The observed anti-bunching occurs when the frequency-detuned spectral wavefunction (i.e.
the joint spectral amplitude) of the two-photon state is partially anti-symmetric, which in turn
reveals the frequency entanglement intrinsic to downconversion [16, 15, 17]. A Gaussian spec-
tral amplitude is always positive and therefore does not have anti-symmetric components, which
explains the significantly reduced beating in the interference patterns of the custom-poled crys-
tal. All measured interference patterns for our custom crystal agree exceedingly well with the
patterns calculated from the theoretic PMF.

One situation in which this method will be useful is the generation of pure heralded single
photons. Even in a group-velocity-matched configuration with a symmetric joint spectral am-
plitude, the maximum purity of the heralded single photon state is, due to the PMF sinc profile
[21], limited to 0.81 (for ppKTP with a 788 nm pump [18, 19, 20] without spectral filter-
ing). This purity affects the two-photon interference visibility between heralded single photons
and thus ultimately the quality of optical quantum gates or multi-photon states generated in
post-selection. We numerically compare two designs for cpKTP crystals (see Appendix E),
characterised by their maximum poling order (m=1 and m=2), with a standard ppKTP crystal
following [21]. Table 1 shows the calculated purities for our two designs compared with a stan-
dard crystal. Taking mmin=1 yields a coarse approximation to the Gaussian function, but the
purity P improves substantially to 0.97. A better approximation to the Gaussian is achieved if
mmin=2, then P=0.99. For further detail, refer to Appendix E.

Table 1. Numerical comparison of the purity P of heralded single-photons of a standard
crystal and two cpKTP crystals of length L, in a group-velocity-matched scenario. The
effective length of both cpKTP crystals is Leff=24.2mm.

Crystal L [mm] Purity P
ppKTP 24.2 0.81

cpKTP mmin = 1 40.5 0.97
cpKTP mmin = 2 41.6 0.99

In conclusion, we demonstrated longitudinal shaping of single-photon wave-packets via in-
direct modulation of the nonlinearity of a crystal. Our method can be used to generate other
spectral profiles of interest, such as a triangle or a top-hat, see Appendix F. A comb-like non-
linearity structure, for example, would allow the direct, lossless generation of frequency-bin
qubits [22, 23]. In addition, the custom-poled crystals can be used in single-crystal sources
for polarization entanglement, such as the Sagnac-type confgurations reported in [24, 25], or
even in a single-pass scheme, combined with the related technique of using two interlaced
first-order poling periods for concurrent type-II downconversion of frequency non-degenerate
photons [26]. Furthermore, we expect this technique to have applications in classical nonlinear
optics, e.g., in second harmonic generation, similar to the spectral shaping techniques previ-
ously demonstrated for this regime [8, 9].

Since our technique allows manipulation of the phasematching profile, it complements
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group-velocity matching, which is commonly achieved by controlling the orientation and width
of the phasematching function. A Gaussian shape vastly improves the purity of heralded pho-
tons from SPDC. The inevitable reduction in the effective nonlinearity is an acceptable tradeoff
given that modern crystals have drastically reduced pump power requirements. In addition,
compared to the alternative of spectral filtering, one can actually pump at a much higher power
without introducing photon number mixedness. This allows the creation of purer multi-photon
states for quantum information processing, e.g. Fock states with high photon number [21].

It will be worthwhile to consider nonlinearity engineering for four-wave-mixing photon-pair
sources in photonic-crystal fibres, where the sinc-shaped phase-matching function has been
identified as a major problem [27]. However, group-velocity matching in these materials is
already a non-trivial task which will inevitably be further complicated by modulation of the
non-linearity.

Appendix

A. Type II SPDC Hamiltonian

For type-II up- or down-conversion, the evolution inside the crystal is governed by the operator
U(t) = T exp(− ı

h̄

∫ t ′
t0

dtH(t)) where T is the time-ordering operator and

H(t) = A
∫

dωidωsdωpα(ωp)e
iΔωt â†

i (ωi)â
†
s (ωs)

×
∫ L/2

−L/2
dzχ(2)e−iΔk(ωi,ωs,ωp)z +H.c. , (3)

is the multimode Hamiltonian [28, 21], where Δω = ωi+ωs−ωp, L is the length of the crystal,
A is a constant proportional to the nonlinearity and Δk(ωi,ωs,ωp) = kp(ωp)− ki(ωi)− ks(ωs)
is the phase mismatch. Typically, the nonlinearity does not vary over the length of the crys-

tal and we can rewrite the spatial integral
∫ L/2
−L/2 dzχ(2)e−iΔk(ωi,ωs)z as the Fourier transform

(FT) of a rectangular function
√

2π
∫ ∞
−∞ χr(z)e−iΔk(ωi,ωs)zdz, where χr(z) = χ(2)(u(z+L/2)−

u(z−L/2)) and u is the Heaviside step function. Evaluating the spatial integral yields the re-
sult Lsinc(Δk(ωi,ωs)L/2) where sinc(x) = sin(x)/x, giving rise to the following form for the
Hamiltonian

H(t) = AL
∫

dωidωsdωpα(ωp)Φ(Δk(ωi,ωs,ωs))

×eiΔωt â†
i (ωi)â

†
s (ωs)+H.c. , (4)

where

Φ(Δk(ωi,ωs,ωp)) = sinc
(1

2
Δk(ωi,ωs,ωp)L

)
(5)

is the phase-matching function. Note that by picking the spatial integration to be centered
around z = 0, it is possible to eliminate a phase term which would normally be present in
equation (4).

For a periodically poled crystal the phase mismatch, Δkp(ωi,ωs,ωp) = Δk(ωi,ωs,ωp)−
2π/Λ, includes the effect of the periodic domain inversion in QPM. The purpose of this do-
main inversion is to undo the mπ—where m is an odd integer—phase error accumulated by
the pump and downconverted fields, by introducing an additional π phase shift to Δk at the
point of inversion. For successful QPM, the poling period therefore has to fulfil the condition
Λ = m2π/Δk, where m is the QPM order.
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Taking the first order term of the Taylor series expansion of U(t)|0〉 and evaluating the time
and pump frequency integrals yields the two-photon state

|ψ〉 =
∫ ∫

dωidωs f (ωi,ωs)â
†
i (ωi)â

†
s (ωs)|0〉 , (6)

where f (ωi,ωs) = α(ωi + ωs)sinc(Δk(ωi,ωs)L/2) and Δk(ωi,ωs) = kp(ωi + ωs)− ki(ωi)−
ks(ωs).

B. Tailoring the crystal nonlinearity

To tailor the crystal nonlinearity, we treat each crystal section s as a rectangular function with
a nonlinearity inversely proportional to the poling order ms. The nonlinearity profile for the
custom-poled crystal is then given by

χT(z) =
21

∑
s=1

1
ms

u
(1

2

s

∑
r=1

mrnrΛ− z
)
×u

(
z− 1

2

s−1

∑
r=1

mrnrΛ
)
, (7)

where u is the Heaviside step function, mr is the poling order of the rth section, nr is the
number of domains within the rth section and Λ=10.85 μm, for type-II, first-order QPM of
410 nm→820 nm+820 nm. The profile χT(z) is plotted in Fig. 1(a).

The design of the nonlinearity profile is subject to two constraints. First, the nonlinearity
of each section is limited to discrete values proportional to 1/m. Larger values of m provide
smoother transitions between successive nonlinearites, however this leads to a greatly reduced
photon creation rate. Second, the width of each section must be an integer number of mΛ/2
and a minimum of 2mΛ, therefore, larger values of m may demand prohibitively long sections.
The ratio between positively and negatively poled regions—known as the duty cycle D = l/mΛ
where l is the length over which the sign of the nonlinear coefficient remains constant—was
chosen to be 50% for odd values of m and as close as possible to 50% for even values, as is
shown in Fig. 2(c).

While the model presented here is not strictly valid due to the small number of domains
within each section of χT(z), modeling at the domain level, Appendix D, shows good agreement
with the basic model in the frequency range over which the detectors are sensitive. The edges
of the spectral response function of the detectors used in this experiment lie in the region of
negligible amplitude and, as opposed to spectral filters, will not give rise to the photon-number
mixing described in [21].

C. Gaussian approximation to sinc function

To determine the exact shape of the target Gaussian function for the nonlinearity profile, we
match the width of the desired Gaussian PMF with the sinc PMF of the form, sinc(ΔkLeff/2),
that would be generated by a standard crystal. The appropriate function is ΦG(ωi,ωs) =
exp(−γ(ΔkLeff/2)2) where the parameter γ ≈ 0.193 is derived from matching the FWHM of
the two functions. We refer to Leff as the effective length, as it does not correspond to the actual
length of the final Gaussian shaped crystal, but rather the length of the hypothetical standard
crystal.

D. Detailed model

We modeled each section of the crystal as having a nonlinearity inversely proportional to the
poling order m. This approximation is only valid for a large number of domains in each section.
Here we calculate the PMF by explicitly considering the contribution from each domain. The
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nonlinearity profile χD(z) will consist of domains of nonlinear coefficients ±χ(2), with sign
changes occurring at positions corresponding to the poling order and duty cycle (this is the
case for the entire length of a typical periodically poled crystal). For example, in the section
corresponding to m=3, where the duty cycle is 50%, the sign changes every 3Λ, while for m=6,
where the duty cycle is ≈ 41.6%, the sign changes from “+” to “−” after 5Λ and back again
after 7Λ. The resulting PMF takes the form

ΦD(Δkp) = χ(2)∑
j

s j(e
−iΔkpz j − e−iΔkpz j−1) , (8)

where s j is the sign of the jth domain and z j−1 − z j is the width of each domain. Figure 3
shows that as Δkp departs from 0, the two models begin to deviate. However, as we discuss in
the main text, there is very good agreement between the basic and detailed models in the region
of interest, i.e. around Δkp = 0.

E. Crystal design for separable joint spectral amplitude

Downconverted single-photons have strong spectral correlations which result in the degraded
purity of a heralded state. A growing effort in engineering pulsed downconversion sources
to produce spectrally decorrelated photons includes manipulating the crystal length, material,
bandwidth and central frequency [19, 29, 30, 31, 32, 33, 34, 35, 36] as well as filtering the
pump field, prior to down-conversion, using an optical cavity [37]. Another method imposes
group-velocity matching to limit these unwanted correlations [18, 20]. However, the presence
of side lobes—which arise from the sinc shape of the PMF—still calls for some level of filtering
in order to achieve high-purity single photons. Spectral filtering is undesirable because it low-
ers the overall single-photon production rate as well as introducing photon-number mixedness
which limits the allowable pump intensity [21].

We show that, in combination with our method of modulating the crystal nonlinearity, group
velocity matching can be used to create high-purity single photon states without the use of spec-
tral filtering. Setting the relationship between the group velocities of the three interacting fields

such that k′p = (k′s + k′i)/2 and picking the length of the crystal to be L =
√

8/γσ2
p(k′s − k′i)2

(where σp is the pump width in s−1 and γ is defined below) generates a joint spectral amplitude
(JSA), where both signal and idler modes have equal bandwidths. For a type-II ppKTP crys-
tal, this corresponds to a crystal length L=24.2 mm and a periodicity of Λ=68.4 μm, pumped
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Fig. 3. Phase matching functions generated from the basic model (black solid line) and the
detailed model (light red line). The inset shows a magnified portion of the PMFs, detailing
the deviation between the models.
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Fig. 4. a) Nonlinearity profiles and b) corresponding PMFs for: m = 1 tailored crystal
(solid black line); m = 2 tailored crystal (dot-dashed black line); and an ideal crystal with a
Gaussian profile (dashed red line). The corresponding sinc PMF (thin dotted line) has been
included for comparison.

with a 788 nm laser with a 0.7nm FWHM which down converts to 1576 nm in the signal and
idler modes. However, for a standard crystal of constant nonlinearity, this will not result in
completely pure states being generated, due to the side lobes in the sinc function.

To eliminate the side lobes, we want to generate a Gaussian PMF,
ΦG(ωi,ωs)=exp(−γ(ΔkL/2)2), whose FWHM matches that of the PMF generated by a
standard crystal, Φ(ωi,ωs)=sinc(ΔkL/2). Substituting ΦG(ωi,ωs) as the PMF, we can now
write the JSA as

f (ωi,ωs) ∝ exp
(
− (ωi +ωs −2μ)2

2σ2
p

)
× exp

(
−γΔk2L2

4

)
, (9)

which, due to the rotational symmetry of the two-dimensional Gaussian function, is separable,
i.e. f (ωi,ωs) = g(ωi)h(ωs).

We numerically compare two designs for cpKTP crystals, Fig. 4, with a standard ppKTP
crystal following [21]. The results are summarised in Table I in the main text.

F. Non-gaussian two-photon spectra

The method introduced in this paper can be applied to the generation of almost arbitrarily
shaped PMFs. As described above, the nonlinearity profile of the crystal should be tailored to
the Fourier transform of the desired PMF. Figure 5 show examples of triangular and square
shaped phase matching functions, as well as the required nonlinearity profile. Negative values
of the nonlinearity, which are required to generate the square shape, can be implemented by
inverting the relevant domain.
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Fig. 5. a) Examples of tailored nonlinearity profiles, and corresponding phasematching
functions, for a) a triangular phase-matching function and b) a top-hat function. The dashed
red line shows the target functions and the black line the results of the discrete approxima-
tion.
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