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Abstract

Exploring Quantum Foundations with Single Photons

Martin Ringbauer

School of Mathematics and Physics

The University of Queensland

Quantum mechanics is our most successful physical theory and has been confirmed to extreme

accuracy, yet, a century after its inception it is still unclear what it says about the nature of

reality. In this thesis, I explore some of the foundational questions which are central to our

understanding of quantum mechanics using single photons as an experimental platform. Three

experiments form the core of the thesis, studying, respectively, the role of reality, causality,

and uncertainty in quantum mechanics. These experiments shed light on decade-old questions

that have previously been thought to be outside the realm of experimental physics. The results

contribute to our understanding of the structure of quantum mechanics, and reveal novel aspects

of phenomena that were believed to be well understood. In three further experiments I also

touch upon the topics of finding physical principles behind quantum mechanics, quantum effects

in extreme gravitational fields, and developing a pathway towards tests of macroscopic quantum

phenomena. Starting out as a fringe discipline, the field of quantum foundations has developed

into an influential area of research. It is now becoming possible to turn many of the foundational

questions in quantum mechanics from topics of philosophy into topics of physics. Subjecting

these questions to rigorous experimental tests the field is making progress in the quest for

understanding our best physical theory.
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Preamble

In 1900 Lord Kelvin delivered a lecture at the Royal Institution of Great Britain at a time

where the general sentiment was that physics was mainly understood and the only thing left was

to perform more precise measurements. In this lecture, Kelvin pointed out that “the beauty

and clearness of the dynamical theory, which asserts heat and light to be modes of motion, is

at present obscured by two clouds”. These two clouds referred to the failure of the Michelson-

Morley experiment to reveal the luminiferous aether, the hypothetical medium through which

light travels; and the fact that the radiation laws of the time made unphysical predictions about

the radiation emitted by a black body, known as the UV catastrophe. Just five years later,

Kelvin’s two clouds gave rise to the theory of relativity and quantum mechanics, respectively—

two theories which caused a radical change in our understanding of the physical world and went

on to become the most successful physical theories. Today, quantum mechanics is the basis

of all of modern physics with the notable exception of gravity, which remains the territory of

relativity and is notoriously difficult to give a quantum description of. Over the last decades

the counterintuitive predictions of quantum mechanics held up in every experimental test and

were confirmed to unprecedented accuracy. Yet, a century after its inception, the cloud over

the interpretation of quantum mechanics is yet to be lifted.

There are two parts to any physical theory: the mathematical formalism, which describes

how the theory works, and the physical interpretation, which connects it to the real world.

While the former is fixed for a given theory, the latter can, and does in general evolve. In

classical mechanics these two go hand-in-hand. There is a parameter x, which is interpreted as

the position of a particle, and there is a differential equation which describes how x changes

over time, that is, how the particle moves through space and reacts to external forces. As

physical theories become more advanced, this one-to-one correspondence breaks down. For

example, Maxwell’s theory of electromagnetism was initially interpreted as describing stresses

and movements in an elastic medium, the luminiferous aether, which carries light waves. This

widely accepted interpretation turned out to be untenable after the famous Michelson-Morley

experiment failed to discover the aether and its very existence was difficult to maintain in the

light of other results such as the theory of relativity. Today it is understood that the aether

does not exist and that electromagnetic waves do not need a medium to propagate. Despite this

drastic change in interpretation, however, the mathematical formalism in terms of the Maxwell-

Heaviside equations remained unchanged and makes the same experimental predictions.

Quantum mechanics takes this interpretational ambiguity to an embarrassing new level,

with not two but over a dozen actively used interpretations. Much of the incentive for this

development stems from attempts to finding a satisfactory resolution of the quantum measure-

ment problem. The central object of the theory, the wavefunction, or quantum state, is used
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to describe and make predictions about any kind of quantum system. According to quantum

mechanics, the wavefunction evolves continuously and deterministically with the Schrödinger

equation, which means that knowing the starting conditions, one can perfectly predict the fu-

ture state of the system. In the course of such an evolution the wavefunction typically ends up

in a quantum superposition and the system is, loosely speaking, in multiple states at the same

time. Yet, in an experiment we always observe definite outcomes. This is captured by the so-

called projection postulate, which asserts that, in a measurement, the wavefunction abruptly

collapses probabilistically into one of the possible outcomes. The problem, however, is that

quantum mechanics provides no clue as to what counts as a measurement and what does not,

neither does it explain why a particular measurement outcome occurs. This leaves plenty of

room for interpretations, ranging from emphasizing the role of the observed in creating the

measurement outcome, to considering the collapse as a physical process that happens all the

time without any measurement, to rejecting the collapse completely and treating every branch

of the superposition state as an alternate reality.

Narrowing down the list of interpretations holds the key to a better understanding of quan-

tum mechanics, yet deciding between them is difficult in practice. Besides pure interpretations,

there are in fact a few theories, which modify the mathematical structure of quantum me-

chanics. These theories make predictions that differ from quantum mechanics and are thus,

in principle, subject to experimental tests with future experimental capabilities. The vast ma-

jority, however, are interpretations which supplement the mathematical formalism of quantum

mechanics with a wide range of physical narratives. These interpretations make largely the

same predictions as quantum mechanics, but as in the case of the luminiferous aether, this

does not necessarily mean they are immune to experimental tests. Besides striving for a better

understanding of our best physical theory, research into quantum foundations and interpreta-

tions of quantum mechanics has inspired the development of some revolutionary technologies.

Quantum computing, for example originated in David Deutsch contemplating over the many

worlds interpretation, and quantum cryptography is rooted in John Bell’s study of local causal

hidden variable theories for quantum mechanics. With applications such as these, foundational

research has been pivotal for the development of quantum information theory, which in turn

provided a new language and mathematical formalism to rigorously address some of the central

questions in quantum foundations. Hence, apart from the desire for our best physical theory to

provide more than just predictions, developing a deeper understanding for the theory is crucial

for developing it further and harnessing its full potential.

What to expect

The core of this thesis are three experiments, studying the role of reality, causality, and uncer-

tainty in quantum mechanics, which are presented in Chapters 4, 5, and 6, respectively. Each

of these chapters is largely self-contained and readers with a strong background in quantum

information, quantum foundations and quantum photonics may wish to skip directly to these
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chapters. Readers less familiar with these fields will find introductions to the relevant technical

concepts, notation, and mathematical background used throughout the thesis in Chapters 1-3.

In Appendices A, B, and C three further experiments are included as original publications.

These are touching upon the topics of finding physical principles behind quantum mechanics,

quantum effects in extreme gravitational fields, and developing a pathway towards tests of

macroscopic quantum phenomena, respectively, and are discussed briefly in Chapter 7

In Chapter 1 I introduce the main concepts and notion of quantum information theory, which

forms the technical basis for the rest of the thesis. This includes discrete-variable quantum

states, processes and measurements, as well as the experimental implementation of these using

single photons and linear optics.

In Chapter 2 I discuss quantum tomography, which is a central tool for calibrating, testing

and verifying quantum experiments. This chapter also includes the first new results of the

present thesis, where we demonstrate a new tomography technique based on quantum super-

channels. This technique enables a complete characterization of the evolution of a quantum

system even when it is coupled to, and initially correlated with an environment, in which case

standard methods fail.

In Chapter 3 I introduce a number of central concepts and ideas relevant in the study of

quantum foundations. This includes quantum correlations and how correlation polytopes can

be used to characterize them and find Bell-type inequalities. I also briefly touch upon the

search for a physical principle that could explain why quantum correlations are not as strong

as relativity allows. This is based on an experimental simulation of post-quantum correlations,

which is included in full in Appendix A. The rest of the chapter focuses on contextuality—

which is widely accepted as the central feature that differentiates quantum theory from classical

theory with an epistemic restriction—various quantum paradoxes, and weak values.

Chapter 4 is devoted to the role of the quantum wavefunction within interpretations of

quantum mechanics. Despite being the central object of the theory and of crucial importance

for making predictions, it remains unclear whether the wavefunction corresponds to physical

reality or is rather a representation of our incomplete knowledge of that reality. The core of this

chapter then discusses an experiment, where we showed that the latter interpretation cannot

fully reproduce quantum predictions.

Chapter 5 discusses the role of causality in quantum mechanics. I first introduce the causal

modeling framework as a rigorous mathematical basis for this question. I then introduce a new

causally motivated decomposition of the assumptions behind Bell’s theorem, and an experi-

ment, where we demonstrated that allowing for superluminal communication of measurement

outcomes is not sufficient to explain quantum correlations in terms of classical cause-and-effect

relations.

Chapter 6 focuses on a widely overlooked aspect of Heisenberg’s uncertainty principle. Con-

trary to widespread understanding, this central principle not only limits how well two incom-

patible observables can be prepared on a quantum system, but also how accurately they can be

jointly measured. I then present two experiments, where we test the optimal tradeoff in mea-
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surement accuracy in a joint approximation of two incompatible measurements on a quantum

systems.

Finally, Chapter 7 concludes with a summary of the results presented in this thesis, a

discussion of the results included in the appendix, and directions for further research.
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CHAPTER 1

Quantum Information Basics

Q
uantum information science views quantum mechanics as a theory that is fundamentally

about information and information processing. The simplest quantum system, the qubit,

serves as a fundamental quantum of information, and quantum mechanics is built from qubits.

This approach thus captures the idea that classical mechanics should be a special case of a

fundamentally quantum description, rather than starting from classical mechanics and quan-

tizing it to get quantum mechanics. Working in this simple information theoretic framework

has proven very successful for understanding the fundamental properties of quantum mechanics

and for developing practical applications.

1.1 Quantum States

1.1.1 Qubits

In classical information science the fundamental unit of information is the bit, short for binary

digit. A bit is represented by a physical system that has two distinct states, denoted 0 and

1, such as high and low levels of voltage in an electrical circuit, or head and tails of a coin.

Quantum information theory is based on the very same premise. The fundamental unit of

information is called a qubit, short for quantum bit, represented by a quantum system with

two distinct states, ∣0⟩ and ∣1⟩. The prototypical example of a qubit is a spin-1/2 particle, such

as an electron. Spin can be thought of as an intrinsic form of angular momentum, and when

measured along some direction will always be found to either point up or down with respect to

the measurement direction. The states ∣0⟩ and ∣1⟩ correspond to spin up and down, respectively,

with respect to the z-direction. In contrast to the classical case, however, a quantum two-level

system is not limited to these states, but can be in any state of the form

∣ψ⟩ = α∣0⟩ + β∣1⟩ = α
⎛

⎝

1

0

⎞

⎠
+ β

⎛

⎝

0

1

⎞

⎠
, (1.1)

where α and β are complex numbers, known as probability amplitudes, which satisfy ∣α∣2+∣β∣2 =

1. The absolute square of the probability amplitude ∣α∣2 is interpreted as the probability of

obtaining outcome ∣0⟩ in a measurement of {∣0⟩, ∣1⟩}. All states of the form Eq. (1.1) lie on

the so-called Bloch-sphere, see Fig. 1.1 and are called pure quantum states. The poles of the
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sphere correspond to the classical bit values ∣0⟩ and ∣1⟩, or computational basis states, and all

other states are quantum superposition states. The counter-intuitive nature of such states was

famously illustrated by Schrödinger using the example of a cat that is at the same time dead

(∣0⟩) and alive (∣1⟩).

a b

Figure 1.1: Classical and quantum bits. (a) A classical bit can be in one of two distinct

states, 0 and 1, or in a statistical mixture, represented by the black line. (b) A qubit can

be in any of the pure quantum states on the surface of the Bloch-sphere, or in a statistical

mixture of them, on the inside of the sphere. Here ∣±⟩= (∣0⟩ ± ∣1⟩) /
√

2 and ∣±i⟩= (∣0⟩ ± i∣1⟩) /
√

2.

Any antipodal pair of states is orthogonal and can be distinguished with certainty, just like the

classical bit values 0 and 1.

More rigorously, a quantum pure-state ∣ψ⟩ is a vector in a Hilbert space H, which is a

complex-valued vector space with an inner product ⟨ · ∣ · ⟩. The absolute square of the inner

product ∣⟨ψ∣φ⟩∣2 quantifies the overlap of the states ∣ψ⟩ and ∣φ⟩, and is related to the probability

of distinguishing these states. This is one of the crucial differences to the classical case, where

any two pure states are either equal or distinct, but not equal with some probability. In the

quantum case, the only states that can be distinguished with certainty are orthogonal states

with ⟨ψ∣φ⟩ = 0. For a qubit these correspond to antipodal points on the Bloch sphere, such as ∣0⟩

and ∣1⟩. Any two nonorthogonal states ∣φ⟩ and ∣ψ⟩, on the other hand, are overlapping and can

be distinguished in a single measurement with a probability of at most 1
2(1+

√
1 − ∣⟨ψ∣φ⟩∣2) [1].

Whether this is due to insufficient control over the state preparation at the level of the physical

properties of the system, or rather due to a fundamental restriction on what can be measured

will be discussed in detail in Chapter 4, (see also Heisenberg’s uncertainty principle, Chapter 6).

In practice, even a classical bit is not perfectly 0 or 1, but rather mostly 0 with a bit of noise.

In general, a bit can be a probabilistic mixture of 0 with probability p and 1 with probability

1 − p. Think, for example of a bit determined by a coin flip. If the coin is fair, the bit will

be completely random, p = 1/2, but if the coin is unfair one of the two is more likely and the

bit contains some information. In Fig. 1.1 these states of the classical bit correspond to a line

segment connecting ∣0⟩ and ∣1⟩. Similarly, quantum pure-states are an idealization, and do not

exist in practice due to experimental noise. In analogy to the classical case mixed quantum
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states are within the Bloch-sphere of Fig. 1.1. In order to describe such states mathematically,

the concept of the state-vector is generalized to a density matrix ρ, which is represented by the

Bloch-vector n⃗ = (nx, ny, nz)

ρ =
1

2
(1 + n⃗ · σ⃗) with ∥n∥ ≤ 1 , (1.2)

where σ⃗ = {σx, σy, σz} is the vector consisting of the Pauli-matrices, defined below, which are

identified with the x,y,z-directions of the Bloch-sphere. The components of the vector n⃗

could thus be identified with the average values of the spin along x,y, and z. Formally, the

density matrix of a qubit is a 2×2 matrix which is positive semi-definite (i.e. it has no negative

eigenvalues) Hermitian (i.e. ρ† = ρ) operator, and has unit trace (i.e. Tr[ρ] = ∑i ρii = 1) for

every physical quantum state. Any such operator can be written as a linear combination of the

elements of an appropriate operator basis, such as the Pauli basis, {1, σx, σy, σz}, which gives

rise to the Bloch-sphere representation of Eq. (1.2)

1 =
⎛

⎝

1 0

0 1

⎞

⎠
σx =

⎛

⎝

0 1

1 0

⎞

⎠
σy =

⎛

⎝

0 −i

i 0

⎞

⎠
σz =

⎛

⎝

1 0

0 −1

⎞

⎠
. (1.3)

This basis is at the heart of the mathematical mapping of the two-dimensional complex-valued

Hilbert space of a single qubit onto the three-dimensional real-valued space of the Bloch-sphere.

As a visual consequence of this mapping, angles in the Bloch-sphere are double the “physical”

angle between the states (defined by the inner product), such that, for example, the orthogonal

states ∣0⟩ and ∣1⟩ with ⟨0∣1⟩ = 0 are not at a right angle, but at antipodal points of the sphere.

In the case of a pure state Eq. (1.2) reduces to ρ = ∣ψ⟩⟨ψ∣ and n⃗ is a unit vector, on the surface

of the sphere. This also shows that states defined in this way are invariant under multiplication

with a global phase factor eiϕ, reducing the number of free parameters by one. The origin of

this nomenclature is the fact that mixed states can be prepared as a statistical mixture of pure

states ∣ψi⟩

ρ = ∑
i

pi∣ψi⟩⟨ψi∣ with ∑
i

pi = 1 , (1.4)

where pi is the probability for the state ∣ψi⟩ in the mixture. Curiously, there are in general

infinitely many ways to prepare a given density matrix as a mixture of pure states1 as per

Eq. (1.4). However, as long as two different ways of mixing pure states produces the same den-

sity matrix, the linearity of quantum mechanics ensures that there is no observable difference,

see Sec. 3.3. To illustrate the difference between pure states and mixed states, consider the

following two states

1Classical probabilistic mixtures in contrast would typically allow for a unique decomposition into pure
states.
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ρ+ =
1

2
(∣0⟩ + ∣1⟩)(⟨0∣ + ⟨1∣) =

1

2

⎛

⎝

1 1

1 1

⎞

⎠
(1.5a)

ρ1 =
1

2
(∣0⟩⟨0∣ + ∣1⟩⟨1∣) =

1

2

⎛

⎝

1 0

0 1

⎞

⎠
. (1.5b)

Since these states have identical diagonal elements, they are indistinguishable for a measure-

ment in the computational basis {∣0⟩, ∣1⟩}. What distinguishes these states are the off-diagonal,

or coherence terms in the density matrix. The state ρ1 =
1
21 is the so-called maximally mixed

state, which is a 50∶50-mixture of ∣0⟩ and ∣1⟩—or in fact any pair of orthogonal states—conveys

no information and lies at the centre of the Bloch sphere. The state ρ+, on the other hand, is

a pure state on the surface of the sphere, which corresponds to a system that is, in some sense,

in both states ∣0⟩ and ∣1⟩ at the same time. This can be quantified using the so-called purity

P = Tr[ρ2
ψ]. The density matrix of a pure state is a so-called projection operator, for which

ρ2
ψ = ρψ and thus Tr[ρ2] = 1. In any other case P < 1 and in the case of a maximally mixed state

P = 1/2, which means that measurement outcomes in any basis are completely random. In the

case of qubits P = 1
2(1+∥n⃗∥2), which conforms the intuition that the length of the Bloch-vector

is a measure of mixedness of the state.

1.1.2 Beyond Qubits

The concepts introduced above are not restricted to qubits, but apply to any quantum system.

A pure d-dimensional quantum state, a qudit, is represented by a d-dimensional complex vector

with norm 1, which has 2(d − 1) parameters (one of the d entries is fixed for normalization,

and another due to an unobservable global phase). A mixed qudit density matrix has d2 − 1

parameters. The gap in the dimension of these two sets of states implies that the geometric

picture gets more complicated than a ball and its bounding sphere. There still exists a map

from the set of mixed quantum states to d2 − 1 dimensional vectors in a generalized Bloch ball,

but this map is not bijective [2]. Not every point in the ball corresponds to a physical state.

Furthermore, the pure state-space is not the full boundary of the ball, but already in the qutrit

case “sprinkled” over the (d2 − 1)-sphere [3].

Continuous Variable Systems

The density matrix also describes so-called continuous variable systems, such as coherent states

of light, which are becoming increasingly important for quantum information, see Ref. [4] for

a comprehensive review. Since such states occupy an infinite dimensional Hilbert space, they

cannot be visualized on a generalized Bloch-sphere. Instead, they can be associated with a

distribution over a classical phase-space, the so-called Wigner quasiprobability distribution [5, 6]

Wρ(q, p) =
1

πh̵ ∫
∞

−∞
⟨q − x∣ρ∣q + x⟩e2ipx/h̵ dx . (1.6)
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Here q and p correspond to a pair of (conjugate) phase-space variables, such as position and

momentum for a free particle, or amplitude and phase for a state of light. The Wigner-

distribution is always normalized to 1 and for states that behave classical reduces to the classical

phase-space probability density. The non-classical features of some quantum superposition

states, such as Schrödinger’s cat-like states, on the other hand, lead to negative regions in the

distribution, see Sec. 3.3.4 and can thus in general not be interpreted as a probability density.

The Wigner distribution nonetheless gives a faithful representation of the quantum state and

the expectation value of an operator Ĝ(q, p) in the state ρ can be recovered as a phase-space

average of the operator’s Wigner transform g(q, p) using Eq. (1.6) with Wρ(q, p) acting as the

probability density [4]:

⟨Ĝ⟩ = Tr[ρĜ] = ∫

∞

−∞
∫

∞

−∞
Wρ(q, p)g(q, p)dq dp .

Another distinct feature of the Wigner distrubution is that it is bounded above and below by
1
πh̵ . This implies in particular that the distribution cannot be infinitely sharp. In other words,

the quantum system cannot have arbitrarily well-defined values for both conjugate properties at

the same time—Heisenberg’s preparation uncertainty principle, see Chap. 6. It is worth noting

that the Wigner distribution is just one of a whole family of quasi-probability distributions,

which all have similar properties [4, 7]. Whether there is a way to avoid negative probabilities

and interpret the quantum state as an object that represents limited knowledge, akin to a

classical probability distribution in phase space is the topic of Chap. 4.

1.1.3 Comparing Quantum States

In practice, one is often interested in comparing two quantum states, for example to assess how

close the experimental state is to the desired ideal state. The two most widely used measures

for this purpose are the trace distance D and the fidelity F [8]. The fidelity is defined as [9]

F(ρ, σ) ∶=Tr[
√√

ρσ
√
ρ ]2 = ∥

√
ρ
√
σ∥2

tr , (1.7)

where the trace-norm ∥ · ∥tr is the sum of singular values. Some authors define the fidelity

without the final square, but the present definition has the advantage that it is physically more

meaningful when generalized to quantum processes [10]. Although the fidelity is not quite a

metric (i.e. a distance measure) on the quantum state space, it could easily be turned into

one [8], but this is typically not necessary, as it already has most desirable properties for a

measure of closeness of quantum states. It is symmetric, bounded to 0 ≤ F ≤ 1 and F(ρ, σ) = 1

if and only if the states are equal. In the case where one or both of the states are pure, Eq. (1.7)

simplifies to

F(∣ψ⟩, σ) =∣⟨ψ∣σ∣ψ⟩∣ (1.8a)

F(∣ψ⟩, ∣φ⟩) =∣⟨ψ∣φ⟩∣2 . (1.8b)

9



In this case the fidelity can thus be interpreted as the probability of finding the quantum system

in state ∣ψ⟩, when it was prepared in state σ (or ∣φ⟩).

The trace distance between two quantum states is defined as

D(ρ, σ) =
1

2
∥ρ − σ∥tr . (1.9)

In contrast to the fidelity, the trace-distance is a proper metric on quantum states. For qubits

it corresponds to half the euclidean distance between the states in the Bloch sphere. The trace

distance also has an important operational interpretation in the sense that 1/2(1 + D(ρ, σ))

is the optimal probability of success for distinguishing the two quantum states with a single

measurement [8]. Although they have somewhat different properties, fidelity and trace-distance

are closely related via [8]

1 −
√
F(ρ, σ) ≤ D(ρ, σ) ≤

√
1 − F(ρ, σ) , (1.10)

where the right-hand inequality is satisfied for pure states.

Recalling that in the case where both states are diagonal in the same basis, that is ρ =

∑i pi∣i⟩⟨i∣ and σ = ∑i qi∣i⟩⟨i∣, they resemble classical probability distribution. In this case, fidelity

and trace-distance reduce to the corresponding classical fidelity Fc and the variational distance

δ, respectively for the probability distributions P = {pi} and Q = {qi} [8]

Fc(P,Q) ∶= (∑
i

√
piqi)

2

, (1.11a)

δ(P,Q) ∶=
1

2
∥P −Q∥1 =

1

2
∑
i

∣pi − qi∣ , (1.11b)

1.1.4 Composite Systems and Entanglement

There is of course more to quantum mechanics than single, isolated systems. Classically, a

composite system is completely specified by the properties of the individual constituents, and

thus lives in the Cartesian product of the individual state spaces. In the quantum case, however,

the state space of a composite system is the tensor product of the subsystem’s Hilbert spaces [8].

In the case of two qubits, for example, the composite (four-dimensional) Hilbert space is given

by Hab = Ha ⊗Hb, where Ha,Hb are the two-dimensional Hilbert spaces of system A and B,

respectively, and ⊗ denotes the tensor product. Just like in the case of classical systems, if

system A is in state ∣ψ⟩a and system B is in state ∣φ⟩b, then the composite system is in the

state ∣ψ⟩a ⊗ ∣φ⟩b. States of this form are called product states. Taking products of the basis

states of the subsystem Hilbert spaces, one can construct a basis for the joint Hilbert space

{∣0⟩a, ∣1⟩a}⊗{∣0⟩b, ∣1⟩b} = {∣00⟩ab, ∣01⟩ab, ∣10⟩ab, ∣11⟩ab}, where ∣01⟩ab is a shorthand for ∣0⟩a⊗∣1⟩b.

Every pure state in this space can be expressed as a linear combination of these basis elements2,

2Note that this space is in fact isomorphic to the state-space of a single ququart with basis {∣0⟩, ∣1⟩, ∣2⟩, ∣3⟩},
see also Chap. 4. Certain quantum superposition states in the ququart space correspond to entangled states in
the bipartite qubit space.
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and every mixed state can be expressed as a linear combination of such pure states

∣ψ⟩ab = ∑
i,j

cij ∣i⟩a ⊗ ∣j⟩b . (1.12)

Classically, a composite system is completely specified by the properties (e.g. phase-space

coordinates) of the individual constituents. Curiously, this does not hold anymore in the tensor-

product structure of composite quantum systems. In other words, not every pure state in Hab

(i.e. the states that can be written as Eq. (1.12)) can be expressed as a product of the states

of system A and system B. The most prominent example are the four Bell-states:

∣Φ+⟩ = (∣00⟩ + ∣11⟩)/
√

2 (1.13a)

∣Φ−⟩ = (∣00⟩ − ∣11⟩)/
√

2 (1.13b)

∣Ψ+⟩ = (∣01⟩ + ∣10⟩)/
√

2 (1.13c)

∣Ψ−⟩ = (∣01⟩ − ∣10⟩)/
√

2 . (1.13d)

The states (1.13) are pairwise orthogonal and form a basis of Hab, such that every state can

be decomposed in a linear combination of these states. However, the Bell states cannot be

expressed as a product of states of system A and system B. On the contrary, the individual

states of the subsystems are completely undefined (i.e. maximally mixed) [11]. More generally,

any quantum state in Hab that can be expressed as a mixture of product states is called a

separable state

ρsep = ∑
i

piρ
a
i ⊗ ρ

b
i with pi ≥ 0,∑

i

pi = 1 . (1.14)

Any state that cannot be written in this form is called entangled3. Deciding whether a given

density matrix is separable or not, however, is a computationally difficult problem in general

(in fact, it is considered NP-hard even for bipartite systems) [13]. Fortunately, in the case of

two qubits there is a necessary and sufficient condition given by the positive partial transpose,

or Peres-Horodecki criterion. Loosely speaking, the joint state of two qubits is entangled if

and only if the matrix obtained by transposing the part pertaining to one subsystem has

negative eigenvalues [14]. Entanglement is considered one of the central resources for quantum

information, as will be discussed in more detail in Sec. 3.2. As soon as one moves beyond the

simple case of pairs of qubits the situation gets very complicated with, for example, multiple

qualitatively different forms of entanglement in the case of multipartite systems, see Ref. [14]

for more details.

Reduced States

In practice, one is often interested only in a subsystem of a larger composite system. For

example, the system of interest might interact with, or be correlated with the environment,

which is inaccessible to the experimenter. When performing a measurement on the system,

3Translated from the German term “Verschränkung”, coined by Erwin Schrödinger in 1935 [12]
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everything else, including potential correlations, is simply ignored or, in quantum information

jargon, traced over. To make this more precise, recall that the trace of a matrix is the sum

of its diagonal elements, Tr[ρ] = ∑i ρii, which, in the case of a density matrix, corresponds

to measuring the system in the computational basis and ignoring the result. In the case of a

composite system, one can choose to trace out (i.e. ignore) only specific subsystems [8, 15]. For

the so-called reduced state of the subsystem A of a bipartite state ρab is obtained by applying

the partial trace to subsystem B

ρa = Trb[ρ
ab] = ∑

j=l
(ρab)ij,kl∣i⟩⟨k∣ , (1.15)

where ρab is written in terms of tensor indices ik for subsystem A and jl for subsystem B. In

Sec. 1.2 below, an intuitive tensor-network representation of the partial trace is introduced (c.f.

See Fig. 1.4). Unless the two subsystems are in a product state, the partial trace will result in a

reduced state that is mixed. The more entangled the initial state, the more mixed the reduced

state. In the case of maximally entangled Bell states, the joint properties of the two systems

are sharply defined, but the individual properties are completely undefined, and the reduced

states are thus completely mixed.

Although preparing mixed states by tracing over part of a pure entangled states seems

qualitatively very different from a statistical mixture of pure states, as long as the two methods

produce the same density matrix, there is no measurement that can distinguish them. This is

also known as the problem of proper (statistical) mixture versus improper (tracing-out) mixture

and is a consequence of the linearity of quantum mechanics. Any non-linear evolution beyond

standard quantum mechanics could in principle distinguish between the two kinds of mixed

states [16, 17], see Appendix B.

Quantifying Non-Classical Correlations

When it comes to quantifying non-classical correlations, the simplest case (two qubits) is well

understood, but everything else not so much. A comprehensive review of the concept of en-

tanglement and how to quantify it can be found in Ref. [14]. There are in fact two commonly

considered problems: deciding whether a given state is entangled, and quantifying the amount

of entanglement.

Since the set of separable quantum states is by definition convex, the Hahn-Banach theorem

guarantees that for every entangled state ρ there exists a hyperplane that separates it from the

set of separable states, see Fig. 1.2. The Hermitian operator associated with such a hyperplane

is called entanglement witness, as it has a positive expectation value for all separable states,

but a negative value for some entangled states. A witness is called optimal, if the plane is

tangent to the space of separable states [14]. Bell inequalities are examples of suboptimal

entanglement witnesses, detecting only Bell-nonlocal states. Optimal entanglement witnesses

can be further strengthened by taking into account additional information about the quantum

state under investigation, which is already available in almost every standard entanglement
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witnessing experiment [18].

separable

entangled

Figure 1.2: Entanglement witness. An entanglement witness W is associated with a hyper-

plane such that the set of separable states are on one side. Every state in the red shaded region

to the right of the witness, such as ρ is correctly identified as an entangled state. However, it

is in general not possible to guarantee that a state is separable, since the boundary of the set

of separable states is not a simple hyperplane.

This geometric approach of entanglement witnesses can also be generalized to multipartite

states [19]. However, the study of entanglement gets significantly more complicated the more

parties are involved. In the case of three qubits, for example, there is entanglement of the

GHZ-type ∣ψ⟩ghz = (∣000⟩ + ∣111⟩) /
√

2 and of the W-type ∣ψ⟩w = (∣001⟩ + ∣010⟩ + ∣100⟩) /
√

3 [20].

When tracing out any of the three parties of a GHZ state, the other two are left in a maximally

mixed state, while they are left in a maximally entangled state if the initial state was a W-state.

Hence, classifying multipartite entangled states requires careful definitions of separability [14].

One could, for example, consider fully separable states, in which case states with only bipartite

entanglement have the same status as genuinely multipartite entangled states, such as the

GHZ-state. On the other hand, measures of partial separability can miss interesting partially

entangled states.

Entanglement witnesses are attractive because they do not require complete knowledge of

the quantum states, which is experimentally challenging. However, different entangled states

require different witnesses to be verified. If, in contrast, the full density matrix of the state

is known (e.g. by performing quantum state tomography, see Chap. 2), one can derive general

purpose, quantitative entanglement measures. Such a measure should vanish for all separable

states and should not increase under local operations and classical communication. Whether a

measure is non-zero for all non-separable states depends on the chosen definition of separabil-

ity [14].

Concurrence

Concurrence C is a measure of bipartite entanglement first introduced in 1997 [21]. This

measure is of particular practical importance since there exists a closed-form expression for its

convex roof extension that generalizes it to mixed states [22].

C = max{0, λ1 − λ2 − λ3 − λ4} , (1.16)
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where λi are the singular values of
√√

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)
√
ρ in decreasing order. The

concurrence can thus be applied to mixed states, as well as pure states. Another often used

measure of entanglement is the tangle [23], which for a bipartite state is simply the square of

the concurrence, but can be generalized to multi-partite states.

Residual Tangle

The residual tangle generalizes the tangle to a measure of genuine 3-partite entanglement, i.e.

entanglement such that no partition of the system is separable [14, 23].

τ3(A∶B∶C) ∶= τ(A∶BC) − τ(AB) − τ(AC) . (1.17)

For mixed states, it can then be defined via the convex roof extension

τ3(ρ) = min∑
i

piτ3(πi) , (1.18)

where the minimum is taken over all pure-state decompositions of ρ = ∑i piπi. Since τ3 is a

convex function on the set of density matrices, the optimum can in principle be found easily [24].

The residual tangle has potential to be generalized to an arbitrary number of parties using

hyperdeterminants [25].

1.2 Quantum Channels

A quantum channel (or process, evolution, dynamics, transformation) describes how the quan-

tum system, and in particular the encoded quantum information, is transformed between state

preparation and measurement. One of the central postulates of quantum mechanics is that

information can neither be lost, nor created. This implies that the evolution of an isolated

quantum system must be described by a unitary operator U (recall unitary means U †U = I),

which corresponds to a generalized rotation, see Fig. 1.3a.

Information only needs to be preserved for isolated systems, but no quantum system is

perfectly isolated in practice, and information encoded in fragile quantum states tends to get

lost into the environment over time, see also Chap. 2. Hence, although the evolution of system

and environment together might be unitary, the reduced dynamics of the system alone can

in general not be described by a simple rotation. Instead, the quantum state will in general

become mixed in the course of the evolution, see Fig. 1.3b.

Formally, a general quantum channel is described by a completely-positive trace-preserving

(CPTP) map E∶L(X) → L(Y), which maps operators (such as density matrices) on the Hilbert

space X onto operators on the potentially different Hilbert space Y. In the following we will

restrict our attention to the common case X = Y, but the results can easily be adapted to

the general case. The map E is positive if it maps positive operators onto positive operators,

and completely positive (CP) if the same is true for the composite map E ⊗ I, where I is the

identity map on a space at least as large as X . Completely-positive maps are the most general
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Figure 1.3: The action of a quantum channel in the Bloch sphere. (a) The initial state,

shown in red, evolves unitarily to the final state, shown in cyan. The intermediate states are

coloured accordingly to illustrate the evolution, which occurs completely on the surface of the

sphere. (b) A noisy version of the evolution in (a), which is non-unitary and decreases the

purity of the state compared to the unitary evolution shown in grey.

transformations that turn a physical quantum state into another physical quantum state [26].

The map is called trace-preserving (TP) if it does not change the trace of an operator.

The requirement that E is trace-preserving is typically not satisfied in practice due to loss.

However, if this loss is unbiased, it is often possible to renormalize the output state (or post-

select on those runs of the experiment in which the system made it through) and treat the

map as trace-preserving. A more serious problem in practice is that correlations with the

environment might make the transformation look non-CP and thus unphysical [27]. There are,

however, sophisticated tools to deal with such situations, see Chap. 2, and in the following all

quantum channels are assumed to be CPTP.

1.2.1 Working with Quantum Channels

In order to work with a quantum channel it has to be represented in a way that makes clear

how it transforms a general quantum state. There are a number of different representations

used for different purposes and by different communities, but are all closely related and can

be transformed into one another, see Ref. [28] for an accessible discussion. All of these are

conveniently represented using a pictorial tensor-network notation [28], see Fig. 1.4.

Since isolated quantum systems evolve unitarily, it should be possible to describe any evo-

lution as unitary by making the system large enough (the “church of the larger Hilbert space”).

This is made precise by the Stinespring dilation theorem [29], which states that any non-unitary

dynamics of the system can be described as a unitary evolution Use of system S and environment

E together, and then ignoring the environment, see Fig. 1.5

E(ρ) = Tre[Use(ρ⊗ ρe)U
†
se] . (1.19)

Curiously, it is not actually necessary to include the whole environment, but the effect of an
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a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

Figure 1.4: Basics of tensor network notation. (a) A state vector ∣Ψ⟩ (a row-vector) is

represented by a triangle with a wire to the right. (b) The conjugate vector ∣Ψ⟩ (a column-

vector) is represented by a triangle with a wire to the left. (c) A straight wire corresponds to

an identity matrix. (d) A box with two wires corresponds to a matrix (rank-2) tensor, such as

a quantum channel or a density matrix. (e) Matrix multiplication (tensor contraction) is rep-

resented by connecting the “wires” corresponding to the indices to be summed over. (f) Tensor

products are represented by vertical composition. The rank of the resulting tensor is the sum

of the tensor ranks. (g) The trace operation for square matrices is represented by contracting

the two matrix indices with each other. (h) The partial trace operation for composite square

matrices is represented by contracting the two matrix indices of the corresponding subsystems

to be traced over. (i) The vectorized identity operator is equivalent to the unnormalized bell

state ∑i ∣i⟩⊗∣i⟩. (j) Column vectorization of a matrix is represented by “bending” the right wire

upwards to form a vector. “Sliding” a matrix around a bell-state results in the transposition

of the matrix.

arbitrarily large environment on a d-dimensional system can always be simulated using an

ancillary system of dimension d2 [30].

Another way to interpret a non-unitary channel is to think of it as a unitary channel with

added noise. This motivates the operator-sum representation, where the quantum channel E

is decomposed into a sum of linear operators Ki, the so-called Kraus operators (or sometimes

measurement operators), see Fig. 1.5

E(ρ) =
d2

∑
i=1

KiρK
†
i where

d2

∑
i=1

K†
iKi = 1 . (1.20)

If E is unitary there is only a single Kraus operator. In general, any completely-positive quantum

channel can be decomposed into at most d2 Kraus operators [8] and any two such decompositions

are unitarily equivalent. In the context of quantum error correction the operators Ki are also

known as noise operators.

1.2.2 Process Matrix Representation

The Choi-Jamiolkowski isomorphism establishes a connection between linear maps and linear

operators, and thus in particular between quantum channels and quantum states [31, 32]. In

the most basic form it refers to what is known as vectorization [28], where an operator U is
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turned into a vector ∣U⟩⟩,

U =
d−1

∑
i,j=0

Uij ∣i⟩⟨j∣ ↦ ∣U⟩⟩ =
d−1

∑
i,j=0

Uij ∣j⟩ ⊗ ∣i⟩ . (1.21)

Here {∣i⟩}d−1
i=0 denotes the computational basis in d dimensions. The set of operators {∣i⟩⟨j∣}

is called the elementary basis of the space of operators, since it consists of all d × d matrices

with a single element that is 1, and otherwise zeros. The order ∣j⟩ ⊗ ∣i⟩ in Eq. (1.21) is a

matter of convention, such that the resulting vector consists of the stacked columns of U . The

corresponding density matrix is ∣U⟩⟩⟨⟨U ∣ = ∑
d−1
i,j=0 ∣i⟩⟨j∣ ⊗ U ∣i⟩⟨j∣U †. Following this argument, a

CPTP map E is associated with a Choi-matrix Λ which is the unnormalized quantum state

(with trace d rather than trace 1) obtained from vectorizing E [33].

Λ =
d−1

∑
i,j=0

∣i⟩⟨j∣ ⊗ E(∣i⟩⟨j∣) . (1.22)

This matrix completely describes the evolution of an arbitrary quantum state ρ under the

channel E

E(ρ) = Tr1[(ρ
T ⊗ 1)Λ] . (1.23)

ba

c

Figure 1.5: Different representations of a quantum channel. (a) In the system-

environment representation the evolution of the system is interpreted as a joint unitary evolution

of system and environment, followed by tracing over the environment. (b) In the operator-sum

representation a quantum channel is decomposed into a sum of Kraus operators Ki. (c) In the

process matrix representation the channel is associated with a Choi-matrix Λ, which is applied

directly to the state ρ.

The Choi matrix is unique for a given basis, but not every basis is equally useful. In

particular, the elementary basis used in the definition (1.22) does not correspond to a set of

physical quantum states. In practice, the Pauli basis {1, σx, σy, σz} or a tensor product in the

case of multiple qubits is most useful, since the matrix elements have a clear interpretation as

Pauli operators acting on the state. The Choi matrix written in the Pauli basis is also known

as process matrix, χ = TΛT †, where T is a basis-change matrix from elementary to Pauli basis.
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The evolution of the state ρ is then given by

E(ρ) = Tr1[(ρ⊗ 1)(T
†χT )] =

d2−1

∑
i,j=0

χijσiρσ
†
j . (1.24)

1.3 Quantum Measurements

Recall that ∣⟨φ∣ψ⟩∣2 is associated with the probability of finding the system in the state ∣φ⟩ after

it was prepared in the state ∣ψ⟩. In other words, ∣φ⟩ is interpreted as part of a so-called projective

or sharp measurement on ∣ψ⟩. In this case, the measurement outcomes correspond to pure states

(i.e. unit vectors) on the Bloch-sphere and form an orthonormal basis of the Hilbert space,

which ensures that the measurement outcome probabilities sum to 1. Consider, for example, a

measurement of {∣0⟩, ∣1⟩} corresponding to Bloch vectors (0,0,±1). Assigning the values a0 = +1

and a1 = −1 to the two outcomes, one can define the observable Ô = a0∣0⟩⟨0∣ + a1∣1⟩⟨1∣ = σz,

associated with the physical property spin in z-direction. The average value of the spin in

z-direction is then given by the expectation value of Ô on the state ψ

⟨Ô⟩
ψ
= ⟨ψ∣Ô∣ψ⟩ = +1∣⟨0∣ψ⟩∣2 − 1∣⟨1∣ψ⟩∣2 = P (0∣ψ) − P (1∣ψ) , (1.25)

where P (0/1∣ψ) is the probability for observing outcome ∣0⟩ and ∣1⟩, respectively. In contrast to

a classical bit, one measurement is insufficient to fully determine an arbitrary quantum state,

see Chap. 2. Just like quantum states are not limited to pure states, measurements are not

limited to sharp measurements. Rather, general measurements could be unsharp, represented

by non-unit vectors, and even biased towards one outcome.

Figure 1.6: Representation of measurements on the Bloch sphere. (a) A sharp mea-

surement on a qubit corresponds to two anti-parallel unit vectors (or orthogonal pure states).

A three-outcome qubit POVM, on the other hand, could be composed of (b) noisy projectors,

or (c) sub-normalized projectors.

A general quantum measurement is represented by a positive-operator valued measure

(POVM) M, which is a set of Hermitian, positive semi-definite operators {Ei}n1 that sum

to the identity (∑
n
i=1Ei = 1). The operators {Ei}ni=1 are called POVM elements (or effects)

and correspond to measurement outcomes. In the special case where all Ei are projective (i.e.

Ei = ∣φi⟩⟨φi∣), the measurement is called sharp and the set {∣φi⟩} is an orthonormal basis of
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the Hilbert space, thus in particular n = d, where d is the Hilbert space dimension. Just like

pure states do not exist in practice, the same is true for sharp measurements, and a general

measurement is unsharp. The probability for the k′th measurement outcome Ek on the state ρ

is given by the Born rule [34]

P (k ∣ ρ) = Tr[ρEk] . (1.26)

The Born rule is one of the key postulates of quantum mechanics crucial for its inherently

probabilistic predictions. There is still an ongoing debate whether or not it can be derived

from the other postulates of the theory [35, 36]. Interestingly, however, once one accepts that

measurement outcomes should be probabilistic, Gleason’s theorem [37] gives strong evidence

that the Born rule is the unique consistent probability rule that depends only on the quantum

state [38].

Figure 1.7: POVMs in practice. (a) Using Naimark’s theorem every POVM can be im-

plemented by interacting the system with a suitable ancilla and performing a joint projective

measurement on system and ancilla. (b) A POVM that is a noisy projective measurement can

be implemented as a convex combination of two sharp measurements. (c) A POVM consisting of

subnormalized projectors can be implemented using sharp measurements and post-processing.

Notably, the measurement probabilities defined in this way only depend on the measurement

operator Ek, and not on the full POVM or any details of how the measurement is implemented4.

The post-measurement state ρ′k of the system, on the other hand, does depend on the physical

realization of the measurement and cannot be determined from the particular POVM element

Ek alone. To this end one needs to specify a (non-unique) instrument, which is a set of

completely-positive maps {φi}, where φk corresponds to the k’th measurement outcome and

∑i φi is trace-preserving [39]. The post-measurement state is then given by

ρ′k =
φk(ρ)

Tr[φk(ρ)]
. (1.27)

Just like mixed quantum states can be considered a subsystem of a larger pure state, POVMs

can be interpreted as the effective description of the measurement on a subsystem arising from

a projective measurement on a larger system. Formally, Naimark’s dilation theorem [40] shows

4This feature is reminiscent of the observation that quantum mechanics is impartial about how a certain
quantum state was prepared (as a mixture of pure states) or how a certain transformation is implemented (as
a mixture of unitary transformations), see Sec. 3.3 for more details.
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that a general POVM can be modelled as a projective measurement on system+ancilla on

a sufficiently extended Hilbert space. Ignoring the ancilla leads to a non-projective POVM

on the system. In practice, implementing POVMs in this way can be quite impractical and,

alternatively, one can implement a POVM as a combination of projective measurements and

post-processing, see e.g. Fig. 1.7.

In the special case of a single qubit, the most general two-outcome measurement is given

by the POVM M = {M+,M−}. The POVM elements, associated with the outcomes ±1, can be

written as M± =
1
2 (1 ± (µ1 + m⃗σ⃗)), with m⃗ a vector on the Bloch sphere, and µ ∈ R representing

the measurement bias, such that ∣µ∣+∥m⃗∥ ≤ 1. One can also define the corresponding observable

by M=M+ −M− = µ1 + m⃗σ⃗. An unbiased measurement can be represented as a vector on the

Bloch-sphere, and the expectation value of the observable M on the state ρ = (1 + n⃗σ⃗)/2 is in

general given by

⟨M⟩ρ = Tr[Mρ] = µ + m⃗ · n⃗ , (1.28)

where m⃗ · n⃗ is the standard scalar product between the real-valued Bloch-vectors m⃗ and n⃗.

1.3.1 Inconsistent Prescriptions

“WHY must I treat the measuring device classically? What will happen to

me if I don‘t?” - E. Wigner [41]

Consider a system in the initial state ∣ψ⟩ = ∑i ci∣φi⟩ with respect to some basis {∣φi⟩}. When

subject to a measurement in the basis {∣φi⟩}, the prescription outlined above implies that

the result k will be obtained with probability ∣ck∣2 and the system will be left in the post-

measurement state ∣φk⟩, see Fig. 1.8a. The two crucial aspects of this measurement postulate

are that measurement outcomes occur probabilistically, and the state of the system changes

discontinuously (or collapses) to the post-measurement state. This, however, is in stark con-

trast to the usual deterministic and continuous evolution of quantum systems prescribed by

the Schrödinger equation.

A “measurement” receives a special (classical) treatment in this prescription, but there is

nothing within quantum mechanics that determines whether a given operation should be treated

this way or not. Quite the contrary, quantum mechanics applies equally well to the measurement

device as it does to the measured system. Denoting the state of the measurement device

before the experiment by ∣ready⟩, a measurement in the basis {∣φi⟩} simply corresponds to an

interaction between the measurement device and the measured system. After this interaction,

system and measurement device are in an entangled state ∑i ci∣i⟩ ⊗ ∣φi⟩, see Fig. 1.8b.

The inconsistency between these two descriptions of a quantum measurement is often re-

ferred to as the measurement problem and is one of the biggest open problems in quantum

foundations. Finding a prescription for what counts as a measurement and what does not, as

well as an explanation for why a specific outcome occurred and not any of the other possibili-

ties are central motivations behind the development of interpretations of quantum mechanics.

Suggestions range from “there is no collapse” to “collapse happens all the time even without

20



Figure 1.8: Two inconsistent prescriptions for quantum measurements. (a) Treating

the measurement device as an external device, the projection postulate asserts that, upon

measurement of {φi}, the system randomly collapses to one of the states φk with probability

P (k) = ∣⟨φk∣ψ⟩∣2, producing the measurement outcome k. (b) Alternatively the measurement

device could be treated as a quantum system and the measurement process as a physical

interaction within quantum mechanics. In this case, the Schrödinger equation implies that the

system and the measurement device in general end up in an entangled state.

measurement” to “collapse is just an illusion”, see Chapter 4 for more details.

1.3.2 Weak Measurements

In practice, measurements in quantum optics are typically destructive in the sense that the pho-

ton, the carrier of the quantum information, is absorbed by a detector during the measurement

process. One way to avoid this is by implementing the measurement in the way illustrated in

Fig. 1.8b, known as a von Neumann measurement. Here the system is coupled to the meter in

such a way that a subsequent measurement of the meter effectively implements a measurement

of the desired observable on the system. Such a measurement scheme thus makes it possi-

ble to extract information from the system without destroying the physical system. However,

the quantum state of the system is nevertheless disturbed, in accordance with the uncertainty

principle in the same way as if the measurement was performed directly on the system. In

the language above, the quantum state of the system is collapsed to one of the measurement

outcomes.

One of the advantages of the von Neumann measurement scheme is that it naturally allows

for weak measurements by reducing the interaction strength5. The measurement strength can

be quantified by a parameter 0 ≤ κ ≤ 1, where κ = 1 just corresponds to a standard strong

measurement and κ = 0 means no measurement at all. A weak measurement is everything

between these two extremes. In the limit where κ is very small, the disturbance of the system

5Traditionally the strength of a von Neumann measurement is determined by the coupling strength g, the
interaction time t, and the initial uncertainty in the meter ∆. A measurement is then considered “weak” if
gt≪ ∆, see e.g. Ref. [42]
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state is greatly reduced—it is on average only slightly biased, rather than projected—but at the

same time, the measurement encodes only very little information about the state. However,

from a large enough ensemble of identically prepared systems, it is nevertheless possible to

infer an average value of the measured quantity with high precision. This is quite different

from a noisy measurement, which extracts little information while still disturbing the system

significantly.

In practice, weak measurements are naturally encountered whenever the measured system

has to be preserved. A typical example is gaining information about the behaviour of a system

between two strong measurements, which is described in terms of weak values. Such situations

can lead to statistically anomalous behaviour, so-called anomalous weak values, which has led

to some controversy around the concept of weak values, see Sec. 3.5. An example of the use of

weak measurements is the reconstruction of the average photon trajectories through a double-

slit [43]. The weak measurement here simply produces a (post-selected) conditional average

(the average trajectory conditioned on the arrival at a specific point on the screen), which is

nothing particularly spooky and agrees well with classical intuition [44]. See Ref. [45] for a

review of applications of the concept of weak values and Ref. [46] for the “contextual values”

approach to unifying the continuous spectrum of measurement strengths.

1.3.3 Quantum Non-Demolition Measurements

As a consequence of Heisenberg’s uncertainty principle, any quantum measurement that reveals

information about the system, must also disturb it, see Chap. 6. A measurement of the position

of a particle, for example, typically disturbs the particle’s momentum. In the subsequent evolu-

tion this disturbance can couple back to the position, such that a second position measurement

might give an inconsistent result.

A quantum non-demolition (QND) (or quantum back-action free) measurement is designed

to avoid exactly this by confining the disturbance to the conjugate observables [47, 48]. Impor-

tantly, a QND measurement is not a novel kind of measurement that avoids disturbance [49],

which would violate the uncertainty principle. Rather, it is a measurement that is cleverly

engineered such that there is no disturbance on the measured observable and subsequent mea-

surements give the same result. This is achieved by designing a situation where the measured

observable is a constant of motion of the free evolution of the system (i.e. commutes with the

free Hamiltonian). The momentum of a free particle (in contrast to it’s position) is an ex-

ample of such a conserved property. A QND measurement can thus be used to stabilize the

measured property, such as photon number in a cavity [50], at the cost of randomizing the con-

jugate observables. QND measurements should not be confused with non-destructive quantum

measurements, which only aim to preserve the physical system, not the quantum state.
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1.4 Quantum Information in Practice

There are a large number of quantum systems out there and all have their advantages and

disadvantages. These include, for example, spins embedded in pure diamond, superconducting

circuits, which are interesting for their similarities to classical electrical circuits, and ions,

which have been setting records in precision and number of entangled qubits. A rather unique

candidate among all these platforms are single photons.

1.4.1 Single Photons

Whereas most systems, such as ions in a trap or superconducting circuits, are stationary, pho-

tons are inherently mobile and in fact quite tricky to hang on to. This makes them a particularly

interesting candidate for quantum communication. Moreover, while most architectures struggle

to preserve their quantum states for seconds, qubits encoded in the polarization of photons have

a coherence time beyond measurable6. This is a result of the fact that photons virtually do not

interact with their environment, which is boon and bane for the architecture. No interaction

means that they are easy to work with—without the need for cryogenics and other isolation—

but at the same time two-photon interactions become a major challenge. The breakthrough

for single photons as a competitive quantum information platform was probably triggered by

a seminal paper by Knill, Laflamme, and Milburn [51], showing that measurement induced

non-linearity is sufficient to implement the crucial two-photon gates.

Photons are also one of the most flexible platforms with a large number of accessible and

controllable degrees of freedom that can be used to encode quantum information and prepare

quantum systems of arbitrary finite dimension. The most prominent degree of freedom is

polarization, which is equivalent to the spin of a spin-1/2 particle and thus gives the photon

a natural qubit structure. Besides polarization, there are other discrete degrees of freedom,

such as photon number and transverse spatial mode. On the other hand, there are continuous

degrees of freedom, such as frequency (i.e. energy), time-of-arrival or path. These latter degrees

of freedom can be binned into discrete sets that can act as a basis for a discrete-variable system.

Polarization

Polarization is the oscillation direction of light as an electromagnetic wave, which naturally

parallels the behaviour of a spin-1/2 particle. Specifically, one can define ∣0⟩ = ∣H⟩ and ∣1⟩ = ∣V ⟩,

where H and V denote horizontal and vertical polarization, respectively, with respect to some

physical reference. Equal superpositions of H and V with phases of 0 and π, respectively define

diagonal and anti-diagonal states ∣D/A⟩ = (∣H⟩ ± ∣V ⟩)/
√

2, which are the eigenstates of σx.

Hence, the xz-plane of the Bloch-sphere is identified with linear polarizations. Choosing any

other phase-value will in general lead to elliptical polarization with the extreme cases (with

phases ±π/2) of right- and left- circular polarization ∣R/L⟩ = (∣H⟩± i∣V ⟩)/
√

2, the eigenstates of

6If the upgraded BICEP detector finds convincing evidence for polarization of the cosmic microwave back-
ground that would suggest a coherence time on the order of billions of years.
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σy. Any polarization state can be decomposed into two orthogonal components, and a rotation

from one polarization state to another thus amounts to a phase-shift between the appropriate

components.

Path Encoding

When encoding a qubit in path, the computational basis states (∣0⟩ and ∣1⟩ for a qubit) are

identified with distinct spatial paths for a single photon. In all other states the photon is in

a superposition of these paths with specific amplitudes and phases. In practice, this means

that the phase between the two modes has to be stabilized to a fraction of a wavelength,

which can be very challenging with bulk optics. Advances in waveguide technology, however,

make it now possible to integrate path-encoded circuits into optical chips, which significantly

improves phase-stability and reduces their footprint. Current devices still suffer from high

losses, however, due to rapid development and electronically controllable phase-shifters, this

architecture now achieves comparable quality to bulk optical implementations [52]. When it

comes to simultaneously encoding information in multiple degrees of freedom, however, this

architecture is more limited, since the waveguide material is typically birefringent and does not

support higher-order spatial modes. Nonetheless, they are the most promising candidates for

creating high-dimensional quantum systems using single photons.

Transverse Spatial Mode

Using non-Gaussian transverse mode structures is another way to encode a high-dimensional

Hilbert space on a single photon. The angular momentum of a photon is composed of a spinorial

and an orbital component, neither of which are angular momenta by themselves [53, 54]. As a

spin-1 particle, a photon can carry ±h̵ of spinorial angular momentum, which corresponds to left-

and right-circular polarization states (or helicity eigenstates) [54]. Orbital angular momentum,

on the other hand, is related to the transverse structure of the field, associated with a helical

phase factor eimϕ for azimuthal angle ϕ [55]. In general, spin- and orbital- angular momentum

are coupled, but at least in the paraxial approximation we can manipulate them independently.

While the former couples to optical anisotropies in the material (i.e. birefringence), the latter

component couples to inhomogeneities in the form of rotational asymmetries [55].

In particular, orbital angular momentum gives rise to optical vortex beams, which have a

zero-intensity “hole” at the centre and have been used for a long time [53]. They offer, for ex-

ample, a very convenient way to introduce angular momentum to other quantum systems like a

Bose-Einstein condensate, or even put these systems in a superposition of rotational states [56].

For quantum information purposes such states offer a (arbitrarily) high-dimensional discrete

Hilbert space. Any mode structure can be written as a discrete sum of so-called Ince-Gauss

modes [57], which can be obtained using devices such as spatial light modulators. Moreover,

states entangled in their transverse mode structure are generated directly from spontaneous

parametric downconversion. Although it is technically challenging, arbitrary transformations

of these states within any finite dimensional Hilbert space are possible with cylindrical lenses,
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inverting prisms, or spatial light modulators.

1.4.2 Manipulating Polarization Qubits

Any operation on a set of qubits can be decomposed into single-qubit rotations and two-qubit

entangling operations. In the case of qubits encoded in the polarization of single photons, the

former are easy, but the latter are causing some headache.

Single-Qubit Operations

Recall that any two polarization states are related by a phase-shift between two suitably cho-

sen polarization components, which is achieved using so-called waveplates. These are made

from birefringent material which features different refractive indices (i.e. propagation speeds)

for different polarizations, thus delaying one with respect to the other. Birefringence occurs

naturally due to anisotropic molecular order in the material, or it can be induced through

stress (stress birefringence), electric fields (Kerr effect) or magnetic fields (Faraday effect). The

most common birefringent materials are so-called uniaxial crystals that have one distinguished

crystal axis—the optic axis—which has a refractive index that is different from the other two

axes. There are also bi-axial materials (the most general case), which are much more complex

and have applications elsewhere.

A waveplate is typically made from a uniaxial material, oriented with the optic axis per-

pendicular to the propagation direction of incoming light. Light is split into the ordinary

component polarized orthogonal to the optic axis, and the extraordinary component polarized

parallel to the optic axis. For a positive uniaxial crystal such as quartz, the extraordinary axis

experiences a higher refractive index ne > no, leading to slower propagation speeds and is thus

called the slow axis. The retardation δ = (ne−no)t/λ (in multiples of the wavelength λ) is then

determined by the difference in refractive index and the material thickness t, which makes the

effect sensitive to the angle of incidence, the temperature, and of course the used wavelength.

Although the retardation is fixed by design, arbitrary single-qubit operations can nonetheless

be implemented using two kinds of waveplates. The so-called quarter-waveplate (QWP) and

half-waveplate (HWP) impart a delay of a quarter wavelength, δ = 1/4, and a half wavelength δ =

1/2, respectively. In the Bloch sphere this corresponds to a rotation of π/2 and π, respectively,

around an axis in the xz-plane, determined by the orientation of fast and slow axis, see Fig. 1.9.

As a trivial consequence, a waveplate does nothing7 to the states along this axis.

A combination of QWP-HWP-QWP is sufficient to go from any point on the Bloch sphere

to any other point and thus implement arbitrary unitary transformations [15]. Starting from

a fixed point, such as ∣H⟩ in the case of state preparation (or measurement in reverse for that

matter) makes the situation even simpler and two waveplates are sufficient (either QWP-HWP

or HWP-QWP). Curiously, informationally complete measurements could even be done with a

single third-waveplate, with a retardation of 1/3 [58].

7In fact, the waveplate still imparts a global phase of π or π/2, which can be relevant if it is part of a
multi-path interferometer.
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Figure 1.9: Waveplate rotation in Bloch sphere. (a) Under the action of a half-waveplate

the initial quantum state (red) undergoes a π-rotation to the final state (orange) about an

axis (black line) in the xz-plane (gray shaded) of the Bloch sphere. The angle θ of the axis

with respect to ∣H⟩ is twice the physical angle of the waveplate. (b) Under the action of a

quarter-waveplate the state undergoes a π/2 rotation around an axis in the xz-plane of the

Bloch sphere. In both cases the states aligned with the axis of the waveplate remain unchanged

up to a global phase.

Characterization of Waveplates

Although single-qubit manipulation is relatively simple for polarization qubits, great care has

to be taken to achieve high precision. The two crucial parameters of a waveplate are the

orientation θ0 of the waveplate’s optic axis with respect to horizontal and its retardation value

δ. Precise characterization of these parameter is key to high-precision experiments. In practice,

this is done by placing the unknown waveplate between two aligned (or crossed) polarization

references (e.g. aligned calcite beam displacers), ideally in-situ, that is, at the final place in

the setup. Recalling that whatever the actual parameters are, when the one of the waveplate

axes are aligned with the reference, any waveplate acts as the identity. Rotating the waveplate

results in a characteristic sinusoidal behaviour of the normalized transmitted intensity

f(θ) = 1 −
1

2
(1 − cos(2πδ)) sin2(2(θ − θ0)) (1.29)

= 1 − V sin2(2(θ − θ0)) , (1.30)

where V = 1/2(1−cos(2πδ)) is the observed visibility. The zero position θ0 is estimated directly

as a fit-parameter8, and is independent of the visibility. Hence, it could also be determined

between crossed polarizers, while the retardation value δ can only be determined between

aligned polarizers. Moreover, the relationship between retardation and visibility is non-linear

with a divergent derivative at δ = 1/2. This implies that, in the case of a HWP, the better the

8In fact, θ0 is the angle of either fast or slow axis, and determining which of the two it is requires more
complicated methods, such as using Fresnel reflection from a metallic surface [59]. In practice, however, it is
almost always sufficient to simply make sure that all axes within an experiment are aligned relative to one
another, which merely requires analysing the behaviour of two consecutive waveplates.
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waveplate is, the more difficult it is to estimate its performance from the interference visibility.

The fidelity of the prepared states with the ideal case, on the other hand, for both QWP

and HWP, features the same sinusoidal dependence (shifted for the QWP) on the retardation

as the visibility. Hence, the fidelity of a single waveplate operation is also quite resilient to

imperfections in the retardation and thus a suboptimal measure for the quality of a waveplate.

Significant deviations of the prepared state on the Bloch sphere may produce large fidelities,

but lead to rapid error accumulation. Hence, although visibility and fidelity are good indicators

for the performance of a waveplate in practice, high-precision experiments could benefit from

more involved techniques in the spirit of gate-set tomography or measurement tomography, see

Chap. 2.

Two-Qubit Entangling Operations

Not every quantum operation on multiple qubits can be decomposed into local single-qubit

operations. They can, however, be decomposed into a series of single-qubit operations and

(one kind of) two-qubit entangling gates. The most widely-used operation of this kind is the

controlled-not (cnot ) gate, which acts on a pair of qubits, such that the operation per-

formed on the second (the target) depends on the state of the first (the control). Specifically,

the cnot -gate flips the polarization of the target when the control is ∣V ⟩, thus implementing

∣V H⟩ ↔ ∣V V ⟩, and acts as the identity otherwise. This can be used to turn a product state

(∣H⟩ + ∣V ⟩)c ⊗ ∣V ⟩t into an entangled state (∣HH⟩ + ∣V V ⟩)ct, where the indices c and t denote

control and target qubits, respectively and normalization has been omitted. In the compu-

tational basis {∣HH⟩, ∣HV ⟩, ∣V H⟩, ∣V V ⟩} the cnot gate and the equivalent cz gate can be

represented as transformation matrices

cnot =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

cz =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.31)

The cz is a controlled σz-gate and thus related to the cnot by a simple rotation of the Bloch-

sphere of the target qubit, using a Hadamard gate Uh = (σx+σz)/
√

2 (a 90○ rotation around the

y-direction of the Bloch sphere), such that cnot = (1 ⊗ Uh) ·cz · (1 ⊗ Uh). In contrast to the

cnot , however, the cz -gate is symmetric in the two inputs and imparts a π-phase shift on

the ∣V V ⟩-component, which performs the operation ∣V D⟩ ↔ ∣V A⟩, thus creating a maximally

entangled state from the input ∣DD⟩ rather than ∣DH⟩ for the cnot . The cz -gate is relevant

because it is closer to experimental implementations in linear optics.

Achieving the required π phaseshift on the ∣V V ⟩-term using photons which are non-interacting,

is quite difficult. The first strategy is to create an extremely non-linear environment, such as

via interaction with atoms [60], which is technologically very challenging. The second strategy

relies on non-classical interference and measurement-induced nonlinearities [51]. Two identical

bosons (such as photons) have a curious property to bunch when incident on a 50∶50 beam
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Figure 1.10: Experimental implementation of a controlled-not gate. (a) The cnot gate

is equivalent to a cz gate up to local Hadamard rotations on the target qubit. (b) In practice,

a cz gate is implemented using partially polarizing beam splitters (PPBS) and appropriate

compensation, see text. The initial state preparation and measurement are performed using a

Glan-Taylor polarizer (GT), and a set of HWP and QWP.

splitter from two different ports, such that they both exit at the same port, but never one each

at the two outputs [61]. This is known as the Hong-Ou-Mandel (HOM) effect [62]. Classically,

one would expect that each particle has a 50% chance to come out at either exit port, leading

to a 50% chance of them exiting at different ports, see Fig. 1.11.

To exploit this effect, two independent single photons are interfered on a partially-polarizing

beam splitter (PPBS), which reflects 2/3 of ∣V ⟩ and transmits everything else. Denoting the

creation operator for ∣V ⟩ in mode i by a†
i , this implements

a†
1a

†
2 ↦

(a†
1 +

√
2a†

2) (a
†
2 −

√
2a†

1)
√

3
=

1

3
(a†

1a
†
2 −

√
2(a†

1)
2 +

√
2(a†

2)
2 − 2(a†

1a
†
2)) . (1.32)

The two middle terms in the right-hand side expression correspond to both photons exiting in

port 1 or 2 and are discarded by post-selecting on having one photon in each arm. The other

two terms interfere to give −1
9 ∣V V ⟩. In order to balance the amplitudes of ∣H⟩ and ∣V ⟩ it is

then also necessary to discard 2/3 of ∣H⟩ in each arm.

The indistinguishability of the initial photons is crucial for the non-classical interference to

occur. If the particles are distinguishable, for example because they arrive at slightly different

times9, no interference is observed, leading to an intensity of 5/9∣V V ⟩. The characteristic drop

in intensity of the ∣V V ⟩-component10 when going from distinguishable to indistinguishable

photons is also known as the HOM dip, see Fig. 1.11d. A cz -gate implemented in this way

is probabilistic and only works with a probability of 1/9, since in all other cases photons exit

at the same port. To filter these erroneous cases, it is necessary to postselect on those events

where exactly one photon is found in each output port which implies that these gates cannot

be concatenated11. In contrast to most other architectures, however, linear optics has the

9At first sight it might seem obvious that photons that do not arrive at the same time cannot interfere, but,
in fact, the interference can be restored by erasing the information about which photon was first [63].

10In fact, the same is true for every input state which has a ∣V V ⟩-component.
11A series of these gates can, however, be used in an overlapping ladder structure, as long as no two photons
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Figure 1.11: Photons on a beam splitter. (a) Classical waves on a 50/50 beam-splitter

have equal probability for exiting at either port. (b) Two distinguishable single photons (e.g.

arriving at different times) behave just as classical waves, but (c) two indistinguishable photons

bunch and always exit the same port together. (d) The probability for finding one photon each

in the two outputs as a function of their temporal separation—the HOM dip. The width of

the dip profile is a quantitative measure of the coherence time τ of the photons, the temporal

interval within which they interfere.

advantage that entangled pairs of photons are rather cheap and can be produced directly,

without requiring an entangling gate. Using a single entangled pair as a resource, it is possible

to implement a cz -gate that has a success probability of 1/4, and requires only post-selection

of the ancillary photons, such that gates of this kind can be concatenated. If entangled pairs of

photons are not available (e.g. when using on-demand quantum-dot based photon sources [65]),

they can be created with low success probability from indistinguishable, separable photons

using so-called fusion gates [66].

interfere twice [64]
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CHAPTER 2

Quantum Tomography
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2.1 Introduction

I
n practice, the experimenter always has to verify that the three components of a quantum

experiment—state preparation, transformation, and measurement—are close to what the

theorist wants them to be. The first step towards this is classical characterization of the devices

(e.g. testing a waveplate with a laser against a reference), which especially in optics can go a

long way to estimating the performance of the device in a quantum experiment [2]. On the other

hand, if the goal is to reconstruct which state (or channel, or measurement) the experiment

actually implemented, quantum tomography is the gold-standard. Just like tomography in

medical imaging, the aim is to reconstruct the unknown state from a large number of snapshots

taken at various angles, see Fig. 2.1. In contrast to the classical case, where all measurements

are performed on the same patient, a quantum measurement necessarily disturbs the state of

the system. As a consequence, it is not possible to reconstruct the exact quantum state of a

single particle, and quantum tomography always reconstructs the (average) quantum state of

an ensemble of identically prepared particles.

A set of different snapshots that contains enough information to fully determine any quan-

tum state is called an informationally-complete set of measurements. For a d-dimensional

system, with d2 − 1 free parameters, the minimal number of measurements in such a set is d2.

One measurement for each parameter and one additional measurement to normalize the exper-

imental frequencies into probabilities. In a very similar fashion, tomography of a measurement

uses an informationally complete set of preparations. Up to an additional parameter that can
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be interpreted as a bias, the measurement also corresponds to a vector on the Bloch sphere,

see also Sec. 1.3.

Figure 2.1: Quantum tomography. Every quantum experiment can be broken up into state

preparation, evolution, and measurement. The aim of quantum tomography is to characterize

the experimental implementation of these three steps. (a) Quantum state tomography aims

to characterize the quantum state produced in the state-preparation step. This is achieved by

subjecting this state to a set of well-calibrated measurements. (b) Quantum process tomogra-

phy aims to reconstruct a description of the evolution of arbitrary states through the quantum

channel. This is achieved by reconstructing the output states (using quantum state tomogra-

phy) for a set of well-characterized input states. (c) Quantum Measurement Tomography aims

to reconstruct a description of the measurement that is implemented by a given measurement

device. By probing the measurement device with a set of well-characterized input states, it is

possible to reconstruct the measurement operators from the observed statistics.

2.2 Quantum State Tomography

Consider, for example, a single qubit, whose state ρ = (1 + n⃗ · σ⃗)/2 is completely described by

the d2 − 1 = 3 real valued parameters that are the components of the Bloch-vector (nx, ny, nz),

see Fig. 2.1. The simplest procedure to find the quantum state is thus by performing measure-

ments along the axes of the Bloch sphere in order to determine the components of the Bloch

vector individually. This is an example of a set of mutually unbiased bases, which are sets of

orthonormal bases, such that the modulus squared of the inner product between elements of

different bases is a constant 1/d, see Fig. 2.2a. In other words, any state from one of these
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bases has equal probability for all outcomes when measured in any of the other bases in the set.

This latter property is particularly interesting for applications such as quantum cryptography.

Although it is unclear whether such sets exist in general, they are known to exist for the most

relevant cases of Hilbert spaces with prime-power dimension [3]. This includes multi-qubit

spaces, which makes these sets the most widely used measurement for multi-qubit quantum

tomography.

In practice, these measurements are often the easiest and most precise. However, they are

over-complete in the sense that they use more than the d2 required measurements. As in the

classical case, more measurements typically means more reliable results, but at the same time

the number of measurements required to characterize a multi-qubit system scales exponentially

with the number of qubits. One way to reduce the number of measurements is to only measure

one outcome for each axes except one, and assume that the total number of events is the same

along every axis. This, however, is a rather asymmetric arrangement of measurements. A

more important class of minimal sets of tomography measurements are so-called symmetric

informationally-complete POVMs [4]. They consist of d2 subnormalized projectors, which have

a fixed inner product and are thus arranged symmetrically in the respective Hilbert space. Such

measurements are conjectured to exist in every dimension, but their existence has only been

shown numerically for dimensions up to 67. In the case of a single qubit the outcomes of the

SIC POVM correspond to the vertices of a regular tetrahedron, see Fig. 2.2.

Figure 2.2: The two most relevant choices of tomographically complete measure-

ments for a single qubit. (a) The standard tomography set are the mutually unbiased bases

corresponding to the Pauli operators, i.e. the axes of the Bloch-sphere. (b) The minimal set of

measurements in the form of a symmetric informationally POVM forms a tetrahedron in the

Bloch-sphere. In this case all projectors are sub-normalized to 1/2 to satisfy the normalization

of probabilities required for a POVM.

2.2.1 Linear Inversion Tomography

In practice, the simplest algorithm for quantum tomography is linear inversion. In the following,

the notation of Ref. [5] is used and the interested reader is referred to Ref. [5] for a more in-

depth discussion. Consider the problem of state-tomography of a d-dimensional system using
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a set of informationally complete (potentially over-complete) measurement operators {Ei}Ki=1,

with K ≥ d2. Using vectorized notation, the expected probabilities for the various measurement

outcomes are then given by Pi = Tr[Eiρ] = ⟨⟨Ei∣ρ⟩⟩. One can then define a vector ∣P ⟩ of observed

probabilities, a matrix S of vectorized measurement operators, and a matrix W of weights [5]

∣P ⟩ =
K

∑
i=1

Pi∣i⟩

S =
K

∑
i=1

∣i⟩⟨⟨Ei ∣

W =
K

∑
i=1

wi∣i⟩⟨i∣ .

(2.1)

Here, ∣i⟩ denotes the unit vector with a single 1 at index i, and wi ≥ 0 are weights which specify

the relative importance of the various measurements. The matrix S contains the vectorized

measurement operators, such that in the ideal case S∣ρ⟩⟩ = ∣P ⟩. The linear inversion problem is

finding a ρ̂lin that satisfies the equation S∣ρ⟩⟩ = ∣P ⟩. This estimator is given by

ρ̂lin = (S†S)−1S†∣P ⟩ . (2.2)

In the case of a tomographically complete or over-complete set of measurements, the matrix

(S†S) is indeed invertible [5], otherwise the Moore-Penrose pseudo-inverse can be used. The

linear inversion estimator is a special case of a weighted least-squares fit [5]

ρ̂ = argminρ ∥WS∣ρ⟩⟩ −W ∣P ⟩∥2 , (2.3)

where ∥ · ∥2 is the Euclidean vector norm. This has the analytic solution

∣ ρ̂⟩⟩ = (S†W †WS)−1S†W †W ∣P ⟩ (2.4)

= ∑
i

w2
iPi (∑

k

w2
k∣Ek⟩⟩⟨⟨Ek∣)

−1

∣Ei⟩⟩ ,

which, in the case of uniform weights wi = 1, reduces to Eq. (2.3).

This simple technique, however, does not cope very well with imperfect experimental data.

As a result of experimental noise, the obtained estimator ρ̂lin is typically not a valid (i.e. positive

semi-definite, Hermitian, trace-one) density matrix [6, 7]. The problem is that the procedure

does not know how a physical density matrix looks like and simply finds a matrix that works.

2.2.2 Maximum Likelihood Estimation

The main problem of linear inversion, that the result is typically unphysical, can be overcome

by only searching the space of valid density matrices for a solution. This solution can in general

not be expected to reproduce the observed data perfectly, but it is the physical state that is

most likely to have produced the observed data.
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To formalize this, note that the probability for jointly observing a set of counts {n1, . . . , nK}

from measurements {Ei, . . . ,EK}, given that the measured quantum state is ρ, is simply the

product of the individual probabilities. Turning this around, the same product describes the

likelihood L that the measured state was ρ, given that the set of counts {n1, . . . , nK} was

observed

L(ρ∣{ni}) = P ({ni}∣ρ) =
K

∏
i=1

P (ni∣ρ) , (2.5)

The goal of maximum likelihood estimation [8, 9] is to find the quantum state ρ̂mle that max-

imizes the likelihood function, or equivalently minimizes the negative log-likelihood function

(which turns out to be computationally more stable). To make the optimization computa-

tionally tractable, it is typically assumed that the probability of observing ni counts from the

measurement Ei is well approximated by a normal distribution centred around the estimator

Tr[Eiρ]

P (ni∣ρ) ∝ exp [−
(ni −Ni Tr[Eiρ])

2

2σ2
i

] . (2.6)

Here, Ni denotes the total number of counts in the basis that contains the measurement Ei.

This takes into account that, due to loss or other factors, it cannot be assumed that the total

number of counts is the same in every basis. For computational reasons it is also convenient to

approximate the estimator-variance σ2
i , which a priori depends on ρ, by the constant variance

of the observed counts ni. When conditioned on a fixed Ni the (unconditionally Poisson-

distributed) counts ni follow a binomial distribution with variance σ2
i ∼ Nipi(1 − pi). Hence,

the approximation of this distribution by a normal distribution is only valid for large Ni, and

when pi ≠ 0,1. Under these conditions maximum likelihood estimation solves the optimization

problem [5]:

ρ̂mle = arg min
ρ

[− logL(ρ∣{ni})]

= arg min
ρ

K

∑
i=1

(ni −Ni Tr[Eiρ])
2

Nipi(1 − pi)
. (2.7)

As shown in Ref. [5] this can be recast as a constraint least-squares optimization

minimize ∥WS∣ρ⟩⟩ −W ∣p⟩∥2

subject to: ρ ≥ 0, Tr[ρ] = 1 ,
(2.8)

where the weights are chosen such that

wi =
Ni

σi
=

√
Ni

pi(1 − pi)
, (2.9)

The linear inversion method of Eq. (2.3) is a special case where the constraints of Eq. (2.8) are

dropped and uniform weights wi = 1 are used. Since the objective function ∥ · ∥2 in Eq. (2.8) is

convex and the constrains are semidefinite, the problem can be solved numerical as a semidef-
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inite program. See Ref. [5] for more details.

2.2.3 Zero Probabilities

If any of the tomography measurements happen to return zero counts, the estimator may assign

a probability of zero to it. However, no finite dataset can do justice to a probability of zero1 [10]

since it cannot exclude the possibility that this event is just very unlikely. Moreover, the normal

approximation in Eq. (2.9) breaks down and it is not possible to assign any non-zero error to

the estimate either [10]. In the case of binary-outcome measurements, a simple way to avoid

zero probabilities is to add a small amount of noise [5, 11] to the observed counts, defining the

observed probabilities

fi =
ni + β

Ni + 2β
, (2.10)

where the factor of 2 in the denominator equals the number of measurements used to normalize

the experimental frequencies (i.e. 2 for a two-outcome measurement). The hedging parameter

β can be chosen freely, but a value of β ∼ 1
2 works well in most cases, except almost pure states,

where lower values work better [5, 12]. This approach works well to avoid zero-probabilities in

the data, but it cannot guarantee that the reconstructed state doesn’t predict zero probabilities.

In particular in situations with low statistics and an unlucky experimenter, it can happen

that, even after adding β, the linear inversion solution still lies outside the Bloch-sphere. The

maximum likelihood estimator in this case would lie on the surface of the sphere and thus predict

probability zero for orthogonal measurements. This can be avoided using hedged maximum

likelihood estimation [12] where the standard likelihood function of Eq. (2.5) is replaced by

product L(ρ∣{ni})det(ρ)β. The optimization problem is then

minimize
1

2
∥WS∣ρ⟩⟩ −W ∣p⟩∥2

2 − β log det(ρ)

subject to: ρ ≥ 0, Tr[ρ] = 1 .

This effectively pushes the estimator away from the boundary, but does not change it signif-

icantly if beta is chosen as above. In the case of measurements in only a single basis, this

actually recovers Eq. (2.10) exactly [12].

2.2.4 Error Bars for Quantum Tomography

Both linear inversion and maximum likelihood estimation produce point estimates ρ̂. Since

such estimates can never hope to match the true ρ exactly (except in the asymptotic limit),

they are only physically meaningful if they have some uncertainty bounds. In the special

case of polarization qubits, error estimation for tomography has been discussed in Ref. [9].

More generally, standard approaches typically use the variance of the point estimator to define

1As discussed in Ref. [10], maximum likelihood estimation is a frequentist tool, which works in the asymptotic
limit of infinite sample size, but “applying a frequentist method to relatively small amounts of data is inherently
disaster-prone”
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ellipsoidal confidence regions. These regions, however, might include unphysical states, even

if the point estimator is physical. This can in general be avoided by constructing the regions

via bootstrapping methods [13] that perform many iterations of the tomography on either

resampled experimental data or experimental data with simulated statistical noise. This method

is used in large parts of the material presented later in this thesis.

However, also the latter method quantifies the variance of the point estimator, which, in

maximum likelihood methods, is in general biased by the positivity constraint (except in the

asymptotic limit) [6, 14]. Indeed, maximum likelihood estimators typically underestimate the

fidelity with the true state [6, 7], and the uncertainty regions of such a biased estimator are in

general suboptimal [14]. In contrast, linear inversion estimators are unbiased but unphysical in

a large number of cases and produce larger mean squared errors, which makes them of limited

use in practice [7].

A reliable error region for maximum likelihood estimation should contain the true state

with high probability and contain no unphysical states. One suggestion that satisfies these

requirements are the likelihood ratio confidence regions Rα(D) introduced in Ref. [14].

Rα(D) = {ρ ∣ λ(ρ) < λα} , (2.11)

where λ(ρ) is the log-likelihood ratio λ(ρ) = −2 log[L(ρ)/maxρ′ L(ρ′)] and λα is a threshold

level, such that region Rα(D) contains the true ρ with probability at least α. The region

Rα(D) is a convex region and is proven to be a near-optimal region estimator [14]. Practically,

however, these regions are difficult to work with since they generally do not have an explicit

description and can have quite arbitrary shapes.

2.2.5 Quantum Process Tomography

Besides quantum state tomography, one of the most important motivations for quantum to-

mography is to reconstruct the quantum process E implemented by the experiment. Although

the experimenter typically has some prior knowledge what he or she intended to build, this can

in principle also be done in a completely black-box fashion. Since a quantum channel maps

density matrices to other density matrices one has to reconstruct the output state for each of an

informationally complete set of inputs. The linearity of quantum mechanics implies that this is

sufficient to know how an arbitrary input state evolves. Intuitively, knowing how the axes of the

Bloch-sphere are transformed is enough to know how every point of the sphere is transformed.

Exploiting the Choi-Jamiolkowski isomorphism the reconstruction of a quantum process E act-

ing on a d-dimensional system can be mapped to state-tomography of the d2-dimensional Choi

matrix ΛE . Using Eq. (1.23) the probability pij for observing the measurement outcome Ej

given that the state ρi was subject to the process is

pij = Tr[E†
j Tr1[(ρ

T ⊗ 1)ΛE] = Tr[(ρT ⊗E†
j)ΛE] = ⟨⟨ρ∗ ⊗Ej ∣ΛE⟩⟩ .
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Note that ρ∗ is now interpreted as a “measurement” on the Choi matrix. With this identification

one can then use the same tools as for quantum state tomography to formulate quantum process

tomography as a constained optimization problem [5]

minimize ∥WS∣ΛE⟩⟩ −W ∣p⟩∥2

subject to: ΛE ≥ 0, Tr[ΛE] = d ,
(2.12)

where S = ∑
K
i,j=1 ∣i⟩⟨⟨ρ

∗
i ⊗Ej ∣ and straight-forward generalizations of ∣p⟩, and W from Eq. (2.1).

In contrast to state tomography, the Choi matrix is normalized such that Tr[ΛE] = d rather

than 1.

Practicality

Since process tomography of an n-qubit process scales as 24n, it quickly becomes impractical.

Hence it would be desirable to use (partially) classical methods to quickly assess the performance

of a quantum process without the constraints of process tomography. In a dual-rail picture,

where the two levels of the qubit correspond to two distinct paths, any n-qubit quantum

channel can be described by a 2n linear optical network of beam-splitters and phase-shifters.

The process is then conveniently represented by a 2n × 2n transfer matrix, which describes

how every input mode is mapped to every output mode. Characterizing the matrix amounts

to measuring the amplitudes and phases of every entry, which can be with a coherent state

exciting one or at most two input ports [2].

2.2.6 Caveats and Generalizations

One of the challenges of tomography is to avoid circularity. State tomography relies on well-

characterized measurements, but to verify the measurements, well-characterized states are

needed. A priori there is no ultimate reference to compare against. As a consequence, the

results of quantum tomography can be quite confounded by errors in state preparation and/or

measurement. Consider, for example, a single qubit prepared by a polarizer and a set of wave-

plates. The state tomography might return a purity of 0.9 for this state, which might of course

be a result of the system getting entangled with the environment. However, since linear op-

tics is blessed (or cursed) with quantum systems that do not interact much with anything, a

more likely explanation is that the tomographic measurements were simply not performing as

expected (e.g. unbalanced loss).

Randomized Benchmarking and Gate-Set Tomography

In practice, state preparation uses a fixed element, such as a polarizer or ground-state cooling,

followed by a rotation, that is, a quantum channel. Similarly, measurements are implemented

using a rotation, followed by a fixed projection, typically in the computational basis. These

elements can typically be characterized classically to estimate their performance in the exper-

iment. In linear optics, for example, polarizers based on birefringent crystals reliably split an
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incoming beam into two orthogonal polarizations with a practical extinction ratio of at least

1 ∶ 104. Importantly, these elements are fixed throughout the experiment and are typically very

repeatable which suggests that the crucial aspect is the characterization of quantum processes

and the dynamical elements in the experiment.

Randomized benchmarking [15, 16] addresses this challenge using sequences of quantum

gates which are chosen at random, such that they ideally add up to the identity. These se-

quences are applied to a fixed input state and the output is measured using a fixed two-outcome

measurement. Since all sequences are decompositions of the identity, all output states should

be the same. However, due to error accumulation the fidelity decreases with the length of the

sequence, and the slope of fidelity vs. sequence-length gives an estimate of the average error

per gate.

Gate-set tomography [17] goes a step further and aims to provide a complete characterization

of the experiment without requiring prior knowledge or perfect references. The experiment is

treated as a black-box that can implement a discrete set of quantum gates (buttons on the

box). In addition, the box is capable of repeatably preparing an input state and performing a

two-outcome measurement in the end. In contrast to other techniques, including randomized

benchmarking, there are only very mild assumptions on preparation and measurement, such as

repeatability of preparation and measurement, but it is not necessary to know the input state

or the measurement that was performed. The collected data for different gate-series is used

to reconstruct the gate-set, input state and measurement, up to a gauge freedom. In contrast

to randomized benchmarking, which averages over coherent errors such as over-rotations, gate-

set tomography is sensitive to these errors and provides a better picture of what is actually

happening [18]. Gate-set tomography is also robust against local maxima in the likelihood

function [17].

Although these methods are in principle independent of the physical implementation, they

are particularly useful in architectures like ion traps, where quantum systems are (mostly)

stationary and transformations are induced by lasers, which enables long sequences of many

randomly chosen operations. Linear optics, on the other hand, is a bit special in this regard

since gates are realized by actual physical elements rather than laser pulses, and the length of

the gate-sequence can thus not be changed as dynamically.

2.3 Taming Non-Completely-Positive Maps with Super-

channels

This section is based on the publication “Characterizing Quantum Dynamics with Initial

System-Environment Correlations” [1].

So far, quantum tomography was concerned with isolated quantum systems and processes.

In real-world experiments, however, quantum systems are inevitably coupled to an environment,

which typically acts as a source of noise, but may also be harnessed as a resource—for example

in initializing quantum states that may be otherwise unobtainable [19–26]. In either case
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understanding the joint behaviour of system and environment is essential. Quantum mechanics

postulates that the joint system-environment (SE) state evolves unitarily, which need not be

true for the system alone. The theory of open quantum systems, nevertheless allows for an

operationally complete description of the reduced dynamics of the system, in the case that the

initial system-environment state is uncorrelated [27], see Fig. 2.3a. This central assumption is

often, however, at best an approximation [28, 29].

In practice, system and environment may be correlated even before the initial state of

the system is prepared. Although the state preparation erases all pre-existing correlations,

it might leave the environment in a different state, depending on which state of the system

was prepared. When these different environment states couple to the evolution again at a

later stage, the implemented process is not just non-unitary, but also non-CP [1, 5, 28], see

Fig. 2.3. Consider, for example, the extreme case of a maximally entangled initial system-

environment state: 1√
2
(∣00⟩ + ∣11⟩)se. A projective preparation of the system into ∣0⟩ or ∣1⟩

leaves the environment in orthogonal states. Hence, if the subsequent system evolution is not

perfectly isolated, it is coupled to different environment states leading to drastically different

reduced dynamics of the system conditional on the used preparation procedure [30]. Standard

characterization techniques may in this case return a description of the reduced system dynamics

that appears unphysical [28, 31–34]. On the other hand, when complete-positivity is enforced,

such as in maximum likelihood quantum process tomography, the reconstructed map does not

reliably describe the system dynamics.

While the environment is typically inaccessible to the experimenter, recent results suggest

that at least partial information about the initial joint system-environment state can be ex-

tracted from measurements of the system alone. Initial correlations can be witnessed through

the distinguishability [35–38] and purity [39] of quantum states, which has also been explored

experimentally [40–42]. A more operationally complete characterisation can be obtained by

using a quantum superchannel M, which explicitly uses the system’s preparation procedure,

rather than the prepared state, as an input [34], see Fig. 2.3b. This superchannel approach

captures not just the system evolution, but also the dynamical influence of the environment,

even in the presence of initial system-environment correlations. Remarkably, it can be ex-

perimentally reconstructed using only measurements on the system, and contains quantitative

information about the initial correlations and the influence of the environment.

2.3.1 Constructing the Superchannel M

Consider the situation in Fig. 2.3b, where a system with Hilbert space X1, and an environment

with Hilbert space Y1 are initially in the joint state ρse ∈ L(X1 ⊗ Y1). In the following L(H)

denotes the set of linear operators on the space H, and T (H1,H2) denotes the set of linear

transformation from the space H1 to the space H2. The joint state ρse is then subject to a

preparation procedure P = (Ps ⊗ Ie) ∈ T (X1 ⊗ Y1,X2,⊗Y2), where Y2 = Y1 (due to the identity

operation), Ie is the identity channel on the environment, and Ps ∈ T (X1,X2) acts only on the

system to prepare it in a desired input state. This is followed by coupled evolution of the joint
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Figure 2.3: Quantum tomography with an environment. (a) Quantum process tomogra-

phy (QPT) is designed for a scenario where an isolated quantum system is prepared in the initial

state ρS and undergoes a joint unitary evolution U with the environment. Process tomography

can reconstruct the reduced dynamics of an informationally complete set of states {ρiin} and a

tomographically complete set of measurements {Mj}
d
j=1 for each input. (b) The situation de-

picted in (a) is at best an approximation of the real state of affairs. In any realistic scenario the

system is initially correlated with the environment, even before the state preparation procedure

P. Furthermore, the evolution U is in general also affected by the environment. The quantum

superchannel (QSC) takes all these effects into account and treats the experiment as a whole.

It can be reconstructed from an informationally complete set of preparation procedures and

measurements.

system-environment state, described by a CPTP map U ∈ T (X2 ⊗ Y2,X3 ⊗ Y3), see Fig. 2.3b.

The output is then given by

ρ′s = TrY3 [U(Ps(ρse))]

= TrX2,Y2,Y3 [(P(ρse)
T ⊗ 1se)ΛU]

= TrX2,Y2,Y3 [(TrX1,Y1 [(ρ
T
se ⊗ 1se)ΛP]

T
⊗ 1se)ΛU] . (2.13)

Figure 2.4 illustrates the construction of the superchannel M to describe the evolution of

Eq. (2.13), and visualizes how it is related to the Choi matrix of the joint evolution. The

equivalent definition of the superchannel Choi matrix ΛM in terms of tensor indices is derived

in the supplement of Ref. [1], and given by

(ΛM)i1i2i3∣j1j2j3 = ∑
n,m,l

(ρse)i1n∣j1m(ΛU)i1ni3l∣j1mj3l , (2.14)

By construction, ΛM ≥ 0 if U is CP. However, the same does not hold true for TP. If U is TP,

then

TrX3[ΛM] = TrY1[ρse] ⊗ 1X2 . (2.15)

HenceM is TP if and only if TrY1[ρse] = 1X1 , which is the case only for a maximally entangled

initial state or if the system is initially in a completely mixed state. In all other cases, different

preparation procedures lead to different overall count rates and the superchannel is not trace
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Figure 2.4: Graphical derivation of the superchannel M for describing the reduced

dynamics of a system initially correlated with the environment. Note that ΛU and

ΛP have each 4 subsystem indices, which correspond to S-input, E-input, S-output and E-

output, respectively, and different colors are used to distinguish Choi matrices (green) from

density matrices (blue). The expression in Eq. (2.13) corresponds to the third term. Since all

tensor wires are contracted the position of ρse and ΛP can be exchanged and the preparation

procedure can be treated as the effective input state. The Choi matrix ΛM of the superchannel

is then defined as the contraction of ρse and ΛU , equivalently to the index contraction given in

Eq. (2.14).

preserving. For a TP map U , the Choi matrix for M has normalization

Tr[ΛM] = Tr[U(1X1 ⊗TrX1[ρse])] = dX1 . (2.16)

The quantum superchannel M ∈ T (X1 ⊗ X2,X3) thus takes the system-preparation procedure

ΛPs ∈ L(X1 ⊗X2) as an input and produces an output quantum state ρ′ ∈ L(X3) given by

ρ′ =M(ΛPs)

= TrX1,X2[(ΛPs ⊗ 1X3)ΛU] .

2.3.2 Superchannel Tomography

The crucial property of the superchannel Choi matrix ΛM is that all environment indices are

contracted and it can thus be tomographically reconstructed from measurements on the system

alone. Since the superchannel takes a preparation procedure as an input, this requires an

informationally complete set of preparation procedures, rather than just a set of prepared states,

as well as an informationally complete set of measurements for each output state. A projective

preparation procedure Pij ∈ T (X1,X2), consists of an initial projection (or postselection) onto

the state ρi followed by a rotation to the state ρj. The corresponding Choi matrix is thus given

by

ΛPij = ρ
∗
i ⊗ ρj ,
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where ∗ denotes complex conjugation. The probability of observing a click when preparing a

state using ΛPij and then measuring the system by projecting onto a state ρk is given by

pijk = Tr [ρ†
k Tr12[(ρ

†
i ⊗ ρ

T
j ⊗ 1X3)ΛM]]

= Tr [(ρ†
i ⊗ ρ

T
j ⊗ ρ

†
k)ΛM]

= ⟨⟨ρi ⊗ ρ∗j ⊗ ρk∣ΛM⟩⟩ = ⟨⟨Πijk∣ΛM⟩⟩ ,

where Πijk ≡ ρi ⊗ ρ∗j ⊗ ρk. For an informationally complete set of states {ρi}Ki=1, with K ≥ d2,

one can generalize the vector ∣p⟩, and matrices S and W introduced in Sec. 2.2.1 to

fijk =
nijk + β

Nijk + 4β

∣p⟩ =
K

∑
i,j,k=1

fijk∣i, j, k⟩

S =
K

∑
i,j,k=1

∣i, j, k⟩⟨⟨Πijk ∣

W =
K

∑
i,j,k=1

wijk∣i, j, k⟩⟨i, j, k∣ ,

(2.17)

where fijk are the hedged experimental frequencies to avoid issues associated with zero proba-

bilities, see Sec. 2.2.3. The total number of events Nijk, which is unknown a priori, is defined

by totalling the observed counts for measurement configurations that sum to identity. Since

the second index Πijk corresponds to the rotated state for the initial projective preparation

procedure, and thus only the first and third indices correspond to true measurements. The

experimental frequencies are thus normalized to d2 = 4 counts, which leads to the factor of 4 in

the definition of the hedged frequencies. For the choice of weights wijk a normal approximation

for the distribution of the observed probabilities pijk is assumed, so that

wijk =

√
Nijk

pijk(1 − pijk)
.

As with quantum state- and process- tomography, one can use maximum likelihood estimation,

see Sec. 2.2.2, to reconstruct the Choi matrix of the superchannel ΛM, by solving the constrained

optimization problem

minimize ∥WS∣ΛE⟩⟩ −W ∣p⟩∥2

subject to: ΛE ≥ 0, Tr[ΛE] = d .
(2.18)

Recall that enforcing complete positivity in maximum likelihood tomography is an effective way

for combating statistical noise, which might lead to apparent non-CP dynamics. However, in the

presence of initial system-environment correlations the reduced evolution of the system would

be genuinely non-CP, which can thus not be correctly reconstructed using maximum likelihood

quantum process tomography. In contrast, the superchannel M fully takes the effect of state

47



preparation into account and is therefore always a completely positive map. As a consequence,

the additional constraint of maximum likelihood estimation is justified for overcoming statistical

noise, even in the presence of initial correlations.

2.3.3 Superchannels in the Wild

To demonstrate the use of the superchannel in practice, consider the evolution of a single

photonic qubit, coupled to, and correlated with an environment, see Fig. 2.5. The experimenter

aims to implement the target system evolution described by the unitary operator Us, chosen as

either a Pauli-Z gate (Us = Z), a Hadamard-gate (Us =H = RyZR
†
y), or a rotation (Us = ZRy),

where Ry denotes a π/4-rotation around σy. Due to coupling to the environment the reduced

dynamics of the system will in general deviate from that described by Us. This can be simulated

by replacing the Z operations in the above decomposition of Us by controlled Z (CZ) operations,

switched on and off conditional on the state of the environment, which is modelled as another

photonic qubit2. In the case of Z and H the environment might thus cause a failure of the

system unitary (i.e. the identity operation is implemented), while in the case Us = ZRy it can

introduce a phase error.

PBS

QWP

HWP

PPBS

FC

APD

Environment

System

P
ik

source

Figure 2.5: Experimental setup. System and environment photons are created in the state ρse

with controllable degree of entanglement, using the source of Ref. [46]. Arbitary preparations

Pij on the system and measurements {Mj} are implemented by means of polarizers (PBS),

quarter- and half-wave plates (QWP, HWP) and single-photon detectors (APD). The joint

system-environment evolution U is implemented as a CZ gate between a set of HWPs and

QWPs. In the case of no initial correlations this setup implements the target system evolution

Us. The CZ gate is based on non-classical interference at a partially polarizing beam splitter

(PPBS) with reflectivities of rH = 0 (rV = 2/3) for horizontally (vertically) polarized light [47].

The initial system-environment state was generated via spontaneous parametric down con-

version in the form

∣ψ⟩se = cos(2θ)∣H⟩s∣V ⟩e + sin(2θ)∣V ⟩s∣H⟩e , (2.19)

where ∣H⟩, ∣V ⟩ correspond to horizontally and vertically polarized photons respectively. In this

case the strength of the initial correlations (both quantum and classical) is parametrized by

2This is sufficient to describe a large range of joint system-environment dynamics including common error
channels, and to illustrate the technique [40, 43], although a slightly larger environment would be required in
the most general case [44, 45].
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the tangle τ = sin2(4θ) and can be tuned from uncorrelated (θ = 0) to maximal correlation (θ =

π/8) [46]. Specifically, initial states with τ = {0.012,0.136,0.423,0.757,0.908} were generated,

with an average fidelity of F = 0.96(1) with the corresponding ideal state. The system was then

subjected to the preparation procedure Pij, which prepared it in the state ρj by first projecting

onto the state ρi followed by a unitary rotation.

Using a set of informationally complete sets {∣H⟩, ∣V ⟩, ∣D⟩, ∣A⟩, ∣R⟩, ∣L⟩} the superchannel

Choi matrix ΛM can be reconstructed using maximum likelihood estimation, as outlined in

Sec. 2.3.2. In the case of vanishing initial correlations, the superchannel factorizes into the den-

sity matrix of the effective initial system state and the effective system channel ΛM = ρs⊗ΛE [34].

Hence, to allow for an operational interpretation of ΛM, is best written using the state basis

for the index corresponding to the effective initial state, and the Pauli basis for the indices

corresponding to the effective channel. Figure 2.6b shows the results of maximum likelihood

quantum process tomography for the case Us = H, with different choices of preparation pro-

cedures that, in the presence of initial correlations, result in vastly different reconstructed

channels. The superchannel M in Fig. 2.6a clearly illustrates the reason for this discrepancy:

a term that corresponds to the identity operation and increases with the strength of initial

correlations. This is exactly the simulated environment-induced failure mode of the system

evolution.

2.3.4 Quantifying Initial Correlations

Initial system-environment correlations reveal themselves through their effect on the system

evolution for different preparation procedures. To quantify these effects, one can define an

average initial system state ρS,av=Tr23[ΛM]/d and an average effective map for the evolution

of the system as ΛEav=Tr1[ΛM]. Recall that for a product initial state (ρse=ρs ⊗ ρe) the map

M takes the product form ΛM=ρs ⊗ΛE . In this case ρS,av=ρs, and ΛEav=ΛE is the Choi matrix

of the channel E describing the (noisy) evolution of the system alone—the same as would

result from conventional quantum process tomography. For a given M one can now define the

corresponding separable superchannel Ms via ΛMs = (ρS,av ⊗ ΛEav). In general M ≠ Ms and

the distance between M and Ms can be used to quantify the strength of the initial system-

environment correlations. This distance is quantified by the so-called initial correlation norm:

∥M∥ic =
1

2
∥M−Ms∥♢ . (2.20)

The matrixM−Ms was introduced as correlation memory matrix in Ref. [34] since it describes

how the dynamics is affected by initial correlations. The choice of the diamond norm ∥ · ∥♢ [48]

allows for an operational interpretation of the initial correlation norm in terms of channel

discrimination [49]. For any two quantum channels E1,E2, the best single shot strategy for

deciding if a given channel is E1 or E2 succeeds with probability 1
2
(1 + 1

2∥E1 − E2∥♢). Thus, when

∥M∥ic = 0 there is no operational difference between M and Ms, which means that there are

no observable system-environment correlations. This can either mean that the initial system-
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Figure 2.6: Reconstruced superchannel Choi matrix and effective channels from

quantum process tomography. (a) Real parts of ΛM for Us = H in the ideal, uncorrelated

case and experimental results for increasing strength of initial correlations. The matrices ΛM

are shown in a polarization-Pauli basis, with the elements from left to right corresponding to

{∣H⟩, ∣V ⟩}⊗{I,X,Y,Z} and from front to back corresponding to {⟨H ∣, ⟨V ∣}⊗{I,X,Y,Z}. The

emergence of a peak corresponding to the identity operation (shown in yellow) is characteristic

for the simulated increased tendency of the single-qubit operation Us (shown in green) to fail in

the presence of stronger initial correlations. The negligible imaginary parts are not shown. (b)

Real parts of the Choi-matrices (shown in the Pauli basis) for Us obtained via quantum process

tomography for different choices of preparation procedure in the case of low initial correlation

τ = 0.136. Cases (i) and (ii) correspond to a fixed ρk in Fig. 2.3b, (iii) corresponds to ρk = ρi,

and (iv) is the case where 1 ≤ k ≤ 4. The information contained in the superchannelM can be

used to identify the optimal preparation procedure.

environment state is indeed uncorrelated, or that the environment is Markovian and initial

correlations do not affect the subsequent dynamics. The initial correlation norm thus provides

a necessary and sufficient condition for the decoupling of the future state of the system from its

past interactions with the environment. When ∥M∥ic > 0 there exists an optimal preparation

procedure that can be used as a witness for initial correlations, and the specific value of the

norm determines the single shot probability of success for this witness. For a more detailed

discussion of the properties of this measure of initial correlation the reader is referred to Ref. [5].

Figure 2.7 shows the measured values of ∥M∥ic for the three system-environment interac-

tions discussed in Sec. 2.3.3 for a range of simulated initial system-environment states. For

all interactions, the maximum obtained value of ∥M∥ic is ∼ 0.5. This is in agreement with

theoretical expectations, since for a maximally correlated initial state the simulated system-
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environment coupling would cause a failure of the evolution with probability 1/2.
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Figure 2.7: Initial correlation norm. Shown is the initial correlation norm ∥M∥ic vs corre-

lation strength τ of ρse for U = σz (blue circles), U = H (yellow squares) and U = Ry (green

diamonds). The values of τ were obtained from state tomography of ρse for each experiment.

The measured real parts of the states with weakest and strongest initial correlations are shown

in the respective insets. The solid line corresponds to the initial correlation norm in the ideal

case. Error bars from Poissonian counting statistics are on the order of the symbol size.

2.3.5 Preparation Fidelity

The information contained inM can also be used to choose a set of preparation procedures that

optimize the impact of the environment. Consider a system preparation via initial post-selection

on the state ρ1. The subsequent evolution is then described by the effective map

ΛEρ1 =
1

pρ1
Tr1 [(ρ

†
1 ⊗ 123)ΛM] , (2.21)

where pρ1 = Tr [(ρ†
1 ⊗ 123)ΛM] /d is the probability of success for the post-selection on ρ1.

Studying the effective maps in Eq. (2.21) for different ρ1, one can optimize the preparation

procedure for any desired evolution of the system. A figure of merit for this optimization is

given by the preparation fidelity Fprep, which measures the fidelity between the implemented

effective map Eρ1 and the desired target channel Us for initial projection onto ρ1,

Fprep(M, ρ1, Us) =
1

d2
F (ΛEρ1 ,ΛUs) . (2.22)

Maximizing Fprep over all states ρ1 for a given target unitary Us finds the preparation which

comes closest to the desired Us. Curiously, this is, in general, not equivalent to minimizing the

impact of the environment, since the optimal preparation might harness some of the environ-

mental correlations to improve the gate performance. Figure 2.8 a and b, show the preparation

fidelity with a nominal Us = Z and Us = RyZ, respectively, calculated from an experimen-

tally reconstructed superchannel M with weak initial correlations of ∥M∥ic = 0.062(5) and
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Figure 2.8: Optimization of the preparation fidelity. The preparation fidelity

Fprep(M, ρ1, Z) for (a) a target Us = Z and (b) a target Us = RyZ is shown as a density

plot on the surface of the Bloch sphere of the initial-projection state ρ1. In both cases, the

initial correlations are very weak, but the preparation procedure can nonetheless be used to

optimize the implementation of the system evolution.

∥M∥ic = 0.034(2), respectively. The effect of the environment is minimized for a state that is

significantly different to the standard preparation ∣H⟩, leading to an improvement in fidelity

by 0.2%. This demonstrates that, even in the regime of almost uncorrelated initial system-

environment states, the information contained in the superchannel can be used to improve the

implemented evolution.

Alternatively, one could consider minimizing Fprep to find the worst-case preparation, which

gives insight into where and why the experimental setup fails. Furthermore, the preparation

fidelity defined in Eq. (2.22) is just one example, and one could consider other figures of merit

depending on the specific scenario.

2.3.6 Discussion

The superchannel approach offers an operationally motivated and experimentally accessible

way of fully characterizing the reduced dynamics of a quantum system that is coupled to

an environment, even in the presence of initial correlations. As a direct generalization of

quantum process tomography, all the tools developed to improve the efficiency of the latter,

such as compressive sensing [50, 51] can also be applied to the reconstruction ofM. Similar to

process tomography, however, the reconstruction of the superchannel relies on well-characterized

preparations and measurements to produce reliable estimates. In contrast to the reduced system

evolution, however, the superchannel is always completely positive, and the use of maximum

likelihood reconstruction is therefore justified, even in the presence of initial correlations.

On the practical side, the superchannel contains information about the initial correlations

and how the environment couples to the evolution of the system. It can thus be exploited to

improve the performance of the experiment, even in the regime of very weak initial correla-

tions, as demonstrated in Sec. 2.3.5. However, since in the limit of vanishing correlations this

approach essentially reduced to quantum process tomography, it is most useful in quantum

architectures which are strongly coupled to their environment, such as spins in local spin baths.

Another application is in quantum control, where control timescales can be much faster than
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environmental reset times.

On the fundamental side, the superchannel allows for the study of non-Markovian quantum

processes, and two two-point correlation example here could easily be generalized to a multi-

point scenario [52]. It has been suggested that such non-Markovianity could be used as a

resource [53], and the superchannel approach has also been used to derive the lower bound on

entropy production in a generic quantum process [54]. Interestingly, the superchannel is closely

related to recent generalizations of the process matrix in the study of the causal structure of

quantum mechanics [52]. In particular, experiments such as the one presented in Sec. 2.3.3 are

excellent candidates for simulating causally non-separable processes, where two operations are

implemented in a superposition of causal order [55].
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CHAPTER 3

Introduction to Quantum Foundations

T
his section introduces a few concepts that are central not just to quantum foundational

research, but also for practical applications in quantum information theory. Many of these

concepts will also be important in the later chapters of this thesis. After a short discussion

of the probabilistic nature of quantum mechanics, I will focus on the non-classical nature of

quantum correlations in Sec. 3.2. After discussing the the famous Einstein-Podolsky-Rosen

paradox and Bell’s theorem, I will briefly touch upon the topic of correlations that are stronger

than those of quantum mechanics, which includes original results that are included in full

in Appendix A. I will also discuss how correlation polytopes can be used to study sets of

correlations and derive testable inequalities from them. In Sec. 3.3 I discuss contextuality,

which is a distinguishing feature of quantum mechanics over classical physics. Section 3.4

focuses on paradoxes and games that act as primitives for fundamental questions as well as

practical quantum information protocols. Finally, Sec. 3.5 discusses pre- and post-selection

paradoxes, their foundational importance, and their connection to weak values.

3.1 Probability and Randomness

Classical physics is deterministic such that sufficient knowledge of the current state of the

system and its environment allows one to uniquely predict the future state of the system

and the outcome of any measurement. The measurement statistics predicted by the Born

rule of quantum mechanics, on the other hand, are inherently probabilistic. In this sense,

quantum theory is often treated as a generalization of classical probability theory, both of

which are special cases in the framework of generalized probabilistic theories [1–4]. Which

physical principle singles out quantum mechanics within these theories, however, is still a topic

of active research [5], see Appendix A.

The origin of the probabilities in quantum theory itself is part of the so-called measurement

problem and one of the central motivations for the study of interpretations of quantum mechan-

ics. In classical mechanics, probabilistic behaviour arises from a lack of knowledge about the

actual state of the system. Whether the same is true in the quantum case is an important open

question, see Chap. 4. However, although modifications such as Bohmian mechanics provide a

deterministic description at an underlying, unobservable level, there are nonetheless observable

events which are fundamentally unpredictable [6].
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This unpredictability is particularly interesting for the computer science community, where

random numbers are crucial for security applications. Classically, random numbers are pseudo

random, which means that they are based on some complicated, but deterministic algorithm. In

other words, they are random but not unpredictable, and security based on these numbers could

be compromised if an adversary discovers the algorithm behind them. Quantum mechanics, on

the other hand, can guarantee unpredictability of the random numbers and thus in principle

enables cryptographic security certified by physics.

Curiously, the interpretation of probability itself has an interesting role to play with respect

to the interpretation of quantum theory. The two main interpretations of probability are the

objective Frequentist interpretation, which sees probabilities as a description of the statistical

distribution of objective properties of an ensemble of systems, and the subjective Bayesian point

of view, which treats probabilities as degrees of belief of an agent. Naturally, the Frequentist

needs to rely on experiments to determine the inherent probability of an event, while the

Bayesian starts with a prior probability distribution that reflects the agent’s beliefs before the

experiment, and updates this distribution in the light of new experimental evidence. Most

importantly, in the Bayesian approach there is no need to assume that quantum systems have

objective properties. Giving up this notion of objective reality, however, we are faced with the

problem of explaining how two observers can assign consistent probabilities to an experiment,

see Chap 4 and Ref. [7]

3.2 Quantum Correlations

As discussed in Sec. 1.1.4, it is in general not possible to decompose the state of a composite

system into definite states of the subsystems. Entangled quantum systems remain intimately

connected no matter how far apart they are, and feature correlations so strong that they cannot

be explained in terms of classical cause-and-effect relations, see Chap. 5 for more details. Such

strong correlations seem to be in conflict with relativity, which has led Einstein, Podolsky

and Rosen [8] in 1935 to suggest that quantum mechanics must be missing something in its

description of the world [8].

3.2.1 EPR Paradox

In a seminal 1935 paper Einstein, Podolsky and Rosen [8] discussed a thought experiment

involving a pair of particles correlated in their position degrees of freedom and with vanishing

total momentum. In the following we will discuss a version of the experiment involving qubits

which was first proposed by Bohm for spin-1/2 particles [9]. Consider two particles in a singlet

state, ∣Ψ⟩ = 1√
2
(∣01⟩ − ∣10⟩), shared between two spacelike separated1 parties, Alice and Bob.

Alice can then choose to measure her particle in either the {∣0⟩, ∣1⟩}-basis or the {∣+⟩, ∣−⟩}-basis.

1Two events are spacelike separated in relativistic spacetime, if any signal travelling from one event to the
other would have to travel faster than light to reach its destination in time. As a consequence, neither event
can act as a cause of the other (if we assume that causes propagate at most at the speed of light), see Chap. 5.
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The singlet state has the special property that whatever measurement outcome Alice gets, Bob’s

system will be projected into the orthogonal state. Hence, if Alice measures in {∣0⟩, ∣1⟩} and

obtains outcome ∣0⟩, Bob’s system will be in the state ∣1⟩, and similarly for other measurement

choices and outcomes. In summary, for one of Alice’s measurement choices Bob’s state is either

∣0⟩ or ∣1⟩, while for the other choice it is either ∣+⟩ or ∣−⟩. Hence, Alice can steer Bob’s quantum

state with her measurement choice [10].

In a model where the quantum state provides a complete description of physical reality (i.e.

a ψ-complete ontological model in the language of Chap. 4) this steering phenomenon implies

that Alice’s measurement choice directly influences the state of reality (or ontic state) of Bob’s

system. Einstein famously described this influence as “spooky action at a distance” [11], since

it must be instantaneous and not constrained by the fundamental speed limit of relativity.

Notably, however, there is no explicit conflict with special relativity, whose central premise is

that no information can be transmitted faster than light. Since Alice’s measurement outcome

is random, so is Bob’s state until he learns about Alice’s measurement outcome. Hence, signal

locality is satisfied at the observational level, despite potential superluminal influences at the

level of an underlying, unobservable, reality. The conflict between the assumption that the

wavefunction provides a complete description of physical reality, and that there is no action

at a distance is known as the EPR paradox. If Alice can steer Bob’s state, then it is not

possible to describe the observed correlations with a so-called local hidden state model, which

ascribes a definite (hidden) state to Bob’s system in every run of the experiment [12]. This

led EPR to suggest that quantum mechanics is incomplete and that the wavefunction must be

supplemented by more general additional variables—a local hidden variable model.

Besides its foundational importance, quantum steering has found application in the context

of quantum cryptography. Consider a scenario where Alice and Bob want to certify that they

share entanglement. Bob trusts that his measurement device operates according to quantum

mechanics, but Alice does not know anything about the workings of her device, nor do they trust

that the source really produces entangled quantum states. By demonstrating Alice’s ability to

steer Bob’s state, that is by violating a steering inequality, they can nonetheless establish that

their observations cannot be explained in terms of a definite quantum state of Bob’s system

together with appropriately fabricated results of Alice’s device [12]. In other words, Alice and

Bob can establish that they share an entangled state and limit the amount of information that

a potential eavesdropped could have about their measurement results [13]. This can be used

to perform so-called one-sided device-independent quantum key distribution, without knowing

anything about the workings of Alice’s measurement device or the source of particles.

3.2.2 Bell’s Theorem

The specific correlations arising in the EPR paradox discussed above2, where Alice and Bob

only measure in either the {∣0⟩, ∣1⟩}-basis or the {∣+⟩, ∣−⟩}-basis can indeed be described by a

2The position-momentum correlations observed in the original EPR paradox can also be reproduced by a
local hidden variable model, since the state and measurements considered there admit a classical description[14].
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local hidden variable model [15–17]. However, John Bell showed that this is not true in general

for correlations arising from local measurements on entangled quantum states. Specifically,

Bell derived an inequality that must be satisfied by any hidden variable model that obeys some

physically motivated assumptions about locality and how classical cause-and-effect relations

work [18, 19], see Chap. 5. Quantum correlations, however, violate this inequality and can thus

not be reproduced by what have become known as Bell-local hidden variable models.

Figure 3.1: The scenario considered by Bell. Two parties, Alice and Bob, each perform one

of two local measurements on one half of a shared quantum state and obtain one of two possible

outcomes. Their measurement choices are represented by the variables X and Y , respectively

and the measurement outcomes by A and B, respectively. The measurement outcomes may

additionally be influenced by a hidden variable Λ, which need not originate at the source.

In the scenario considered by Bell, Alice and Bob share a quantum state of two qubits.

They can each choose to perform one of two measurements on their system, x ∈ {0,1} for Alice

and y ∈ {0,1} for Bob, and each obtain one of two outcomes, a ∈ {±1} for Alice and b ∈ {±1} for

Bob. In a Bell-local hidden variable model Alice and Bob can freely choose their measurement

settings, but they are not allowed to communicate, which is typically justified by spacelike

separating them. These models are characterized by conditional probability distributions of

the form

P (a, b∣x, y) = ∑
λ

P (a∣x,λ)P (b∣y, λ)P (λ) , (3.1)

where Λ is a hidden variable that is not observable. Loosely speaking, a Bell-local hidden vari-

able model is one in which Alice and Bob try to reproduce the correlations of entangled quantum

systems using a pre-arranged strategy and a shared list of random numbers (corresponding to

λ), but are not allowed to communicate (represented by the factorization in Eq. (3.1)). All

correlations obtained in such a way must satisfy the Clauser-Horne-Shimony-Holt (CHSH) in-

equality [20]

S2 = ⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2 , (3.2)

where ⟨AxBy⟩ = ∑a,b abP (a, b∣x, y) denotes the joint expectation value for the product of out-

comes of Alice and Bob for input x and y, respectively. P (a, b∣x, y) is the conditional probability
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for outcomes a and b, given the settings were x and y, respectively. Correlations obtained from

measurements on certain Bell-nonlocal entangled quantum states, on the other hand, can vio-

late the inequality up to the so-called Tsirelson bound S2 = 2
√

2.

Similar to steering, Bell inequalities have found application in quantum cryptography. By

violating the CHSH inequality Alice and Bob can convince a third party, Charlie, that they

share entanglement, even if Charlie does not trust either of them. In other words, a violation

of the CHSH inequality allows for a device-independent verification of entanglement, without

any assumptions about the workings of the used devices. This is very relevant in cryptographic

scenarios, where it allows Alice and Bob to establish a secure connection with untrusted devices.

In fact, as we show in Chap. 5, security can be established even if Alice’s measurement outcome

is leaked.

3.2.3 A Hierarchy of Correlations

When considering mixed states the structure of correlations becomes quite interesting, even

for a pair of qubits, see Fig. 3.2. Not every entangled state can be used for steering, and not

every steerable state can be used for teleportation [12]. Furthermore, not every un-entangled

state is necessarily classical. In fact, just as the classical states of a single qubit lie on a line in

the Bloch-sphere, the classical states of two qubits are a negligible part of the set of two-qubit

states (a set of measure zero) [21]. All other states exhibit quantum discord which, loosely

speaking, means that the state cannot be fully determined without disturbing it. For pure

states, discord is equal to entanglement, but this is not true anymore for mixed states, where

entangled states are a subset of discordant states, see Fig. 3.2. Discord is a valuable resource

by itself and has been linked to advantages in some computational tasks [22], and to remote

state preparation, where Alice tries to prepare a state at Bob’s side [23]. The interested reader

is referred to Ref. [24] for a comprehensive review on quantum discord.
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Figure 3.2: Hierarchy of correlations. Classically correlated states form a negligible (i.e.

measure-zero) subset of the space of quantum states (indicated by black lines). All other states

feature quantum discord (indicated by the gray shading) [25]. As the shading gets darker,

states get more powerful, with Bell-nonlocal states being the most powerful.
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3.2.4 Superquantum Correlations

Curiously, quantum correlations are stronger than any classical correlations, yet they are not

the strongest correlations that respect signal locality. Instead, the so-called Popescu-Rohrlich

(PR) box, which satisfies a⊕ b = xy (where ⊕ denotes addition modulo 2), violates the CHSH

inequality (3.2) up to the algebraic maximum of 4 and still remains compatible with signal

locality [26]. Moreover, theories which allow for such strong correlations exhibit many features

present in quantum mechanics [27]. These include effects that are common to theories with a

restriction on knowledge [16], such as no-cloning [26] and uncertainty relations [28], as well as

effects that are considered genuinely non-classical, such as monogamy of correlations [28] and

nonlocality swapping [29].

This raises the question which physical principle, if not signal locality, singles out quantum

mechanics from this family of more general probabilistic theories. A number of such principles

have been proposed [30–37], most of which are of information-theoretic nature. A promising

example is information causality [30], which strengthens signal locality by requiring that the

amount of information that Bob can gain about an unknown to him data set of Alice can-

not be more than the amount of information that Alice communicates to him, see Fig. 3.3.

Both classical and quantum theory satisfy information causality, but it is violated by many

post-quantum theories [30]. Specifically, the principle recovers Tsirelson’s bound for isotropic

correlations [30], and also reproduces the full boundary of bipartite quantum correlations for

some two-dimensional slices of the no-signaling polytope (see Sec. 3.2.5), but not for all [27].

This short-coming, however, might only be a result of the used random access coding protocol,

which is not necessarily optimal. Moreover, a sufficient condition for information causality to

hold has so far only been found for one fixed protocol [27], but not in general. Using non-locality

distillation [38], the set of correlations ruled out by information causality can also be further

extended, which suggests again that the protocol is not optimal in every case [39]. Future

generalizations of any principle would also have to take into account that no bipartite principle

can hope to recover the quantum set of genuinely multipartite correlations, which may appear

classical in any bipartition [40].

The Information Causality Game and Random Access Coding

The principle of information causality is typically formulated as a game and is a special case

of random access coding, which is one of the central primitives in the study of (quantum)

communication complexity [41, 42]. The game is played between Alice and Bob, where Alice

holds a list of N = 2n bits {ai}N−1
i=0 and Bob receives an index 0 ≤ b ≤ N − 1, which labels one of

Alice’s bits that he should guess. In addition to using arbitrary shared no-signaling resources,

Alice is also allowed to send an m-bit message to Bob. The principle of information causality

then states that the information that Bob can gain about Alice’s data must be limited to m

bits, as measured by the mutual information I or the success probability of the information
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Figure 3.3: Quantum Random Access Coding. A general no-signaling resource is given by

a space-like separated (indicated by the dashed line) pair of black boxes producing local outputs

A and B for Alice and Bob, when they input a and b, respectively. In the case of a PR-box the

outputs of the left (L) and right (R) box would be perfectly correlated according to A⊕B = ab.

(a) The simplest instance of the information causality game, where Alice has two bits {a0, a1}

and Bob tries to guess the bit ab. Here Alice inputs a0 ⊕ a1 into her box, obtains output A

and sends a message m = A ⊕ a0 to Bob. Bob then inputs b into his box and from his output

computes his guess G = M ⊕ B for Alice’s bit. (b) Example of the multilevel information

causality protocol for n = 2. Alice has a list of N bits ai and Bob tries to guess the bit a2

(shown in bold, red) using N−1=3 pairs of shared black boxes on n=2 levels (corresponding

boxes labeled L0/R0, L1/R1, L2/R2). Alice’s inputs at the highest level are similar to the case

in (a), while those on the next level(s) contain information about the previous outputs. Bob’s

inputs bi and choice of boxes are determined by the binary decomposition b = ∑
n−1
k=0 bk2

k. From

his outputs B1,B2 and Alice’s 1-bit message M Bob computes a final guess G for Alice’s bit

ab. Note that Bob only needs to use one box on each level and ignores the outputs of all the

other boxes. Hence, his input to these boxes can be arbitrary and in the experiment presented

in Appendix A we chose to use the same input for all boxes on one level.

causality game in Fig. 3.3, see Appendix A for details.

I =
N−1

∑
i=0

Ic(ai∶β∣b = i) ≤m . (3.3)

Specifically, consider the case where Alice sends a 1-bit message to Bob, and they are allowed to

use arbitrary classical resources (such as a shared list of random numbers), quantum resources

(such as shared entangled states), or post-quantum resources (such as shared PR boxes). In

the classical case the best possible strategy is “majority vote”, where Alice sends the most

frequent bit to Bob [43], which, in the case of random bits, succeeds in 50% of the cases. Using

shared entangled states outperforms the classical strategy in a very similar way to the CHSH

game [44, 45], but the information gain is still bounded to 1 bit. Using a nested protocol and

a shared PR box, however, Alice and Bob can succeed every time, thus violating information
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causality. A more detailed experimental study of this principle, using simulated post-quantum

correlations can be found in Appendix A.

3.2.5 Correlation Polytopes

The set of classical probability distributions over a set of variables forms a convex polytope,

such that any distribution can be written as a weighted sum of the extremal points. Sets of

correlations compatible with linear constraints naturally give rise to such polytopes, which turn

out to be a powerful tool for the systematic study of the underlying correlations [46]. The aim

of this section is to summarize the essential aspects of this approach at the example of Bell-local

correlations.

As a simple example, consider a three-dimensional cube with corners (±1,±1,±1), centred

around the point (0,0,0). The coordinates of any point (x, y, z) within the cube can be decom-

posed into a weighted sum of the coordinates of the corners. What separates the cube from

the rest of three-dimensional space are inequality constraints of the form −1 ≤ x, y, z ≤ 1. In a

very similar fashion, the full set of classical probability distributions is a convex polytope, such

that any distribution within the set can be written as a weighted sum of the extremal points.

The polytope is bounded by the positivity (i.e. P ≥ 0), and normalization (P ≤ 1) constraints

for classical probabilities. More generally, any boundary of a polytope within a space of equal

dimension has the form of an inequality. Boundaries to a space of larger dimension, on the

other hand, are formulated as equalities. In the case of the cube, for example, the boundary to

the four-dimensional space with coordinates (x, y, z, t) is given by the inequality t = 0.

No-Signaling Correlations

In the CHSH scenario, there are two parties, Alice and Bob, with two measurement settings, X

and Y , respectively, and two outputs each, A and B, respectively. Hence, full set of conditional

probabilities of measurement outcomes given the inputs P (a, b∣x, y) forms a 24-dimensional

hypercube defined by the constraints 0 ≤ P (a, b∣x, y) ≤ 1. In addition to these constraints the

measurement outcome probabilities must be normalized (i.e. add up to 1) for each combination

of measurement settings

∑
a,b

P (a, b∣x, y) = 1 ∀x, y , (3.4)

which reduces the number of free parameters by 4. The physical interpretation of the CHSH sce-

nario further requires that the probability distributions satisfy signal locality (or no-signaling),

corresponding to the four constraints

∑
b

P (a, b∣x, y) = ∑
b

P (a, b∣x, y′) ∀a, x, y, y′

∑
a

P (a, b∣x, y) = ∑
a

P (a, b∣x′, y) ∀b, y, x, x′ .
(3.5)

This implies that Alice should not be able to gain information about Bob’s measurement setting

from her local measurement outcome and vice versa. The constraints of Eq. (3.4) and Eq. (3.5)
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define the set NS of no-signaling correlations as a convex 8-dimensional polytope in a 16-

dimensional space (since Eq. (3.4) and Eq. (3.5) are 8 equality constraints)

NS =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎝

P (−1,−1∣0,0)

⋮

P (+1,+1∣1,1)

⎞
⎟
⎟
⎟
⎠

∣ 0 ≤ P (a, b∣x, y) ≤ 1 ∧ normalization (3.4) ∧ signal-locality (3.5)

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

,

(3.6)

Each inequality constraint corresponds to a facet of the polytope, and each extremal probability

assignment corresponds to a vertex. Crucially, due to the convexity, either facets, or vertices

are sufficient to fully specify the polytope. It is typically easier to define the polytope by

specifying the facets, which in the case of NS are simply the 16 positivity constraints. The

vertices can then be found by studying the dual polytope, which, loosely speaking, is obtained

by turning every vertex into a facet and every facet into a vertex [5, 47]. In practice, this is done

using software packages such as PORTA [48]. In the case of the set NS there are 24 vertices,

which consist of 16 local-deterministic assignments and 8 non-local boxes [39], see Fig. 3.4.

The local deterministic vertices are such that exactly one outcome occurs for every choice of

settings, while the non-local vertices correspond to the PR-box distributions, a ⊕ b = xy and

the respective symmetries under relabelling of inputs, outputs and parties. The relabelling

operation acts as a permutation within the set of non-local vertices and within the set of local

vertices.

Parametrization. Instead of dealing with the full probability vector it is often instructive

to use a parametrization in terms of the marginal probabilities ⟨A⟩xy = ∑b∑a aP (a, b∣x, y)

and ⟨B⟩xy = ∑a∑b bP (a, b∣x, y), and the correlator ⟨AB⟩ab = ∑a,b abP (a, b∣x, y). A priori these

quantities are 4-component vectors, however, signal-locality requires that ⟨A⟩xy = ⟨A⟩x and

⟨B⟩xy = ⟨B⟩y. The remaining 8 parameters fully describe the conditional probabilities

P (a, b∣x, y) =
1

4
(1 + a ⟨A⟩x + b ⟨B⟩y + ab ⟨AB⟩ab) . (3.7)

The set NS in Eq. (3.6) can thus also be described by the vector (⟨A⟩0 , ⟨A⟩1 , . . . , ⟨AB⟩11).

Bell-local Correlations

The set of Bell-local correlations BL satisfies signal locality and is thus a subset of the set

NS, with the additional constraint of local causality and measurement independence, given

by Eq. (3.1), see Chap. 5 for more details. The 16 vertices of the set Bell-local correlations

are exactly the local-deterministic assignments of the no-signaling set. However, the polytope

of Bell-local correlations has 8 additional facets, which correspond to the 8 symmetries of the

CHSH inequality (3.2) under relabelling of inputs, outcomes and parties, see Fig. 3.4. Also

here, relabelling is a symmetry transformation, which does not change the set of correlations,

but this is not true in general. An example where the various facets are not related by a

simple relabelling is the inequality discussed in Chap. 5, where the outcome B may depend on
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Figure 3.4: Correlation polytopes in the simplest case. A sketch of a two-dimensional

cut through the structure of the space of possible correlation between two parties, who can

each perform one of two dichotomic measurements. The set of Bell-local (BL) correlations is

a polytope, which is bounded by CHSH inequalities. These correlations are a subset of the

polytope of correlations compatible with signal locality (NS). The set of quantum correlations

(Q) is convex, but not a polytope and thus more difficult to characterize. The dashed line

indicates isotropic correlations, which include as special cases the maximally mixed state (in

the centre), the maximally entangled state (achieving the Tsirelson bound at the boundary

between Q and NS) and the PR-box, which is the strongest form of correlation compatible

with signal locality [5].

outcome A. In either case, studying the polytope corresponding to the probability distributions

compatible with a certain constraint (such as local causality) provides an easy way for finding

experimentally testable inequalities for these correlations.

The Set of Quantum Correlations

The set of Bell-local correlations is a strict subset of the set Q of quantum correlations, with

the boundary given by the 8 symmetries of the CHSH inequality. At the same time, quantum

correlations are a subset of no-signaling correlations, but the exact form of this boundary

is, even in the simplest case, still largely unknown. The Tsirelson bound, which marks the

maximal violation of the CHSH inequality, is in fact only one point of the continuous boundary

between quantum and post-quantum correlations. The rest of the boundary is computationally

difficult to study, since the set of quantum correlations, in contrast to Bell-local and no-signaling

correlations, is not a polytope, see Fig. 3.4.

However, not every aspect of the problem is intractable and both, numerically deriving, and

analytically proving Tsirelson-type bounds for CHSH inequalities with two parties and n binary

measurements, can be cast as a semidefinite programming problem and solved efficiently [49].

Building on this result, Navascues et al. [50, 51] developed an infinite hierarchy of conditions
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that, in the asymptotic limit, describe the set of quantum correlations. Each level of this

hierarchy amount to testing for the existence of a positive semidefinite matrix with ever more

stringent constraints. A failure of this test identifies a candidate correlation as non-quantum,

but the hierarchy only converges to the quantum set in the asymptotic limit. Nevertheless, the

authors identify situations where a quantum representation can be certified in a finite number

of steps [51]. Curiously, the first step of this hierarchy of correlations corresponds to a closed

set of correlations that is only slightly larger than quantum correlations and thus called almost

quantum correlations [52]. This set of correlations was shown to satisfy most physical principles

that are meant to single out quantum correlations, and there is numerical evidence suggesting

that it might satisfy information causality as well, which makes it an interesting test bed for

further studies [52].

3.3 Contextuality

In a noncontextual theory, any two experimental procedures that produce the exact same

statistics in every situation, should be represented by the same element in the theory. Consider,

for example, the maximally mixed quantum state ρ = 1
d1, which can be decomposed into

infinitely many different sets of pure states. The linearity of quantum theory implies that any

decomposition of this state will return the exact same statistics under any measurement. In

a noncontextual ontological model3 of quantum mechanics, the maximally mixed state would

therefore have to be represented by the same “state of reality” (or ontic state, see Sec. 4.2),

regardless of how it was generated. As a consequence of the result presented in Chap. 4

such models are not possible. Following Spekkens [53], there are three relevant notions of

contextuality for an operational theory such as quantum mechanics

i) Preparation noncontextuality: If two preparations are operationally indistinguishable (i.e.

they produce the same statistics for every measurement), then they should be represented

in the same way at the ontic level.

ii) Transformation noncontextuality: If two transformations are operationally indistinguish-

able (i.e. they produce the same statistics for every preparation and measurement), then

they should be represented in the same way at the ontic level.

iii) Measurement noncontextuality: If two measurements are operationally indistinguishable

(i.e. they produce the same statistics for every preparation procedure), then they should

be represented in the same way at the ontic level.

Formally, one defines equivalence classes of preparations, transformations, and measurements

as those elements that are operationally indistinguishable (i.e. produce the same statistics). In

the case of quantum theory, these equivalence classes are density matrices, CP maps, and mea-

surement operators, respectively. Everything that distinguishes elements within an equivalence

3An ontological model for an operational theory aims to explain the operational predictions for measurement
outcomes in terms of objective physical properties, ontic states (or hidden variables), see Sec. 4.2.
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class but has no observable effect, such as different pure-state decompositions of a mixed state,

is part of the context. For a model to be noncontextual all the elements of an equivalence class

must be represented in the same way in the model. On the other hand, a model is contextual if

it fails for at least one element. In this sense the notion of contextuality is more permissive than

noncontextuality. The latter, however, holds in classical mechanics, and indeed, the emerging

definition of a classical theory is a local non-contextual theory [53, 54].

Preparation Contextuality

The observable statistics of quantum mechanics depend only on the density matrix but not the

specific pure-state decomposition. However, it seems reasonable to expect that two different

ways of preparing the same mixed state—two distinct experimental procedures, using distinct

pure states—would lead to some difference at the ontic level. Indeed, any ontological model of

quantum mechanics must be preparation contextual for the maximally mixed state4 [53], which

can (for non-maximally ψ-epistemic models) be extended to all mixed states [55]. These results

only rest on the assumption that convex combinations of quantum states are represented by

convex sums of epistemic states. This is a fairly uncontroversial assumption if one considers a

preparation of mixed states via a classical random choice. Whether preparation contextuality

extends to pure states is still an open question.

Transformation Contextuality

The observable statistics of a quantum channel depend only on the CP map but not on the

specific decomposition into Kraus operators. However, since different Kraus decompositions

correspond to different physical implementations, one might again expect that this difference

may reveal itself at the level of the transition matrix for ontic states. Indeed, any ontological

model of quantum mechanics must be transformation contextual for irreversible transforma-

tions, which are the ones with non-trivial Kraus representation [53]. Although there is a close

relationship between quantum states and quantum transformations by means of the Choi-

Jamiolkowski isomorphism, at the ontic level transformations and preparations play a rather

different role. The study of ontological models of quantum mechanics, however, mostly focuses

on simple prepare-and-measure experiments, since transformations can often be absorbed into

the state preparation, and thus typically play a secondary role.

Measurement Contextuality

A quantum measurement is represented by a POVM, {Ei}, and the probability for each outcome

Ei depends only on this measurement operator, but not on the full POVM. In the case of sharp

measurements on systems of dimension 3 or larger, there are thus multiple ways to complete

a given measurement operator Ei to a proper measurement, which gives rise to a notion of

4It is quite ironic that, although many of the strange features of quantum mechanics can be reproduced
classically, one of the simplest possible quantum states—the maximally mixed state—shows genuinely non-
classical behaviour.
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measurement contextuality first discussed by Bell [56], Kochen and Specker [57], see below. An

unsharp measurement, on the other hand, can in general be implemented in many different ways

as a convex combination of sharp measurements. This gives rise to a notion of measurement

contextuality even for qubits that is very similar to that of preparation and transformation

contextuality outlined above [53]. Any ontological model for quantum mechanics, which is

preparation contextual must also be measurement contextual for unsharp measurements [53].

3.3.1 Kochen-Specker Contextuality

The notion of contextuality was pioneered by Bell [56], Kochen and Specker [57], who showed

that, for systems of dimension 3 or larger, there can be no ontological model that is measure-

ment noncontextual, and outcome deterministic. The combination of these two properties is

now called Kochen-Specker noncontextuality. Outcome determinism requires that the outcome

probabilities for a given ontic state can only take the values 0 or 1. This does, however, not

imply that the quantum probabilities must be deterministic, since they arise from an average

over many ontic states. Curiously, outcome determinism for sharp measurements is a conse-

quence of preparation noncontextuality and the perfect predictability associated with sharp

measurements [58].

For systems of dimension 3 or larger5, a sharp measurement operator can be part of multiple

projective measurements. For example, a measurement along ∣0⟩ for a qutrit could be part of

the contexts {∣0⟩, ∣1⟩, ∣2⟩}, as well as {∣0⟩, 1√
2
(∣1⟩ + ∣2⟩) , 1√

2
(∣1⟩ − ∣2⟩)}. Proofs of the Kochen-

Specker theorem are then phrased as graph-theoretic arguments using a number of overlapping

measurement bases. In dimension 4, for example, one could consider 18 measurement directions

and 9 orthonormal bases, such that each measurement operator is part of exactly two bases.

The measurement operators are associated with vertices of a graph, which, in accordance with

outcome determinism, can for a fixed ontic state be assigned either probability 0 and coloured

white, or probability 1 and coloured black. Normalization of probabilities requires that there

is exactly one black vertex in each basis. Such an assignment, however, is not possible in a

noncontextual model [59]. The contradiction can be avoided by either allowing values different

from 0 and 1 (i.e. giving up outcome determinism), or by allowing the values to depend on the

respective basis (i.e. giving up measurement noncontextuality).

In order to make the Kochen-Specker theorem experimentally testable, the logical contra-

diction must be turned into an inequality[60]. Although this is always possible [61], care has to

be taken to not arrive at an inequality that merely rules out models which are logically incon-

sistent [59]. The simplest case, the Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality,

involves 5 measurements {Ai}, each taking values ±1, arranged in a pentagram around the

state vector of the measured state [62]. These measurements are chosen such that Ai and

Ai+1( mod 5) are compatible, which allows for a deterministic value assignment in the inequality

⟨A1A2⟩ + ⟨A2A3⟩ + ⟨A3A4⟩ + ⟨A4A5⟩ + ⟨A5A1⟩ ≥ −3 . (3.8)

5Kochen and Specker provided an explicit counterexample to their theorem for two-dimensional systems [57].
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Due to the odd number of terms, this is a frustrated network of correlations. Moreover, the

inequality is state-dependent, although the notion of contextuality is not. However, this is just

a shortcoming of this very simple inequality and, adding more measurement configurations, one

can formulate state-independent inequalities.

One of the main drawbacks is that any derivation of Kochen-Specker inequalities relies on

the idealized assumptions of exact operational equivalence and sharp, noiseless measurements,

which cannot be achieved in practice. Experimental tests (e.g. Ref. [63–65]) are subject to a

finite-precision loophole6, which has led to a lot of discussion about whether contextuality is

experimentally testable at all [58, 66].

3.3.2 Universal (Operational) Contextuality

A violation of a Kochen-Specker inequality can always be attributed to a failure of outcome

determinism, rather than measurement noncontextuality. Hence, instead of testing Kochen-

Specker noncontextuality, it would be desirable to test noncontextuality directly without ide-

alized assumptions. Recall that, according to Spekkens’ operational definition [53], a model is

contextual if it fails to be noncontextual for any preparation, transformation, or measurement.

Preparation contextuality is considered the most fundamental since it cannot be avoided in any

ontological model of quantum mechanics [55] (except potentially maximally ψ-epistemic models,

which are ruled out on other grounds, see Chap. 4). Preparation contextuality, together with

perfect predictability for eigenstate measurements, can then be used to derive outcome deter-

minism for sharp measurements [58]. The Kochen-Specker theorem can thus be derived from

the assumptions of noncontextuality, operational equivalence and perfect predictability [59].

Although this does not seem to improve the situation much at first sight, perfect predictability

is a quality that can be tested experimentally, in contrast to outcome determinism, which acts

at the ontic level. Hence, turning the argument around, universal noncontextuality and oper-

ational equivalence imply a failure of perfect predictability. One can then derive quantitative

bounds on how far from perfect predictability a noncontextual model must be [59]

A =
1

6
∑

t∈{1,2,3}
∑

b∈{0,1}
P (X = b∣Mt, Pt,b) ≤

5

6
. (3.9)

Here, A is the average degree of correlation between the measurement outcome X and the (bi-

nary) choice of preparation b, for three measurement choices Mt and three pairs of preparations

Pt,b. If measurements are more predictable than this bound, and operational equivalence holds

for measurements and preparations, then universal contextuality is ruled out [59]. Contextual-

ity inequalities derived in this way are robust against noise but still require very low noise to

be violated.

6In principle, one could extend the Hilbert space in a way that all states can be modelled as pure states
of system+ancilla, transformations are unitary and measurements are sharp (the “church of the larger Hilbert
space”). This turns a measurement-contextual, but outcome-indeterministic model into a deterministic one,
but this is not unique and requires some assumption about extending the ontic state space [58].
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The final hurdle is the assumption of exact operational equivalence. Recall that two prepa-

rations (measurements) are operationally equivalent if they produce the same statistics for all

possible measurements (preparations). Experimentally, this is clearly unfeasible, since not only

are no experimental procedures exactly equivalent, but neither can any experiment test all possi-

ble measurements. To overcome this in practice, one can rely on the assumption that the chosen

sets of preparations and measurements are each informationally complete. Operational equiva-

lence for such sets then implies operational equivalence relative to all possible preparations and

measurements, respectively. The statistics of any set of operationally equivalent preparations

and measurements can then be inferred from the statistics on those well-characterized informa-

tionally complete procedures, see Ref. [67] for details. However, although three binary-outcome

measurements are complete for quantum mechanics, this need not be the case for a more general

theory that the data must be compared against. Despite some evidence in favour of it7, it is

unclear if any experiment could ever fully justify the assumption that three measurements are

informationally complete for a qubit. Hence, a violation of Eq. (3.9) could still be attributed

to a failure of the chosen measurements to be informationally complete, rather than a failure

of universal noncontextuality.

3.3.3 Noncontextuality and Classicality

Noncontextuality (in the operational sense defined above) is emerging as the most general def-

inition for classicality [54, 59, 67–72]. Bell-locality, which is another commonly held notion

of classicality, can, for example, be considered a special case of contextuality, where Bob’s

measurements are Alice’s measurement context and vice versa8 [16, 68, 74]. For any prepara-

tion noncontextual model there is a Bell-local model, and any proof of Bell’s theorem can be

turned into a proof of preparation noncontextuality [71]. The converse implication from prepa-

ration noncontextuality to Bell’s theorem works in special cases [75], see Chap. 4. Moreover,

negativity of the Wigner quasi-probability distribution, which is a notion of non-classicality

for continuous-variable systems, was also found equivalent (when generalized appropriately) to

contextuality [70].

3.3.4 Wigner Negativity

When trying to represent the quantum states of continuous variable quantum systems on some

kind of phase-space, one is naturally led to quasi-probability distributions, such as the Wigner

distribution. These share some features with classical probability distributions and can repro-

duce quantum measurement statistics. However, in contrast to probability distributions, they

are bounded, and thus occupy a minimum area set by the preparation uncertainty principle,

see Chap. 6, and they can (and have to be) negative in some areas. Specifically, a quantum

7From fitting the data from a (quantum mechanically) over-complete set of four measurements to a theory
where three are complete.

8In fact, it was shown that the spatial contextuality-inequalities of KCBS, and Bell-inequalities are both
special cases of so-called the n-cycle inequalities [68, 73].
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state ρ is associated with a quasi-probability distribution µρ(λ) (normalized to ∫ dλµρ(λ) = 1),

and a POVM with outcomes {Ek} is associated with a response-function ζEk(λ) (normalized

to ∑k ζEk(λ) = 1), such that

Tr[ρEk] = ∫
Λ

dλµρ(λ)ζEkλ . (3.10)

Here, λ ∈ Λ corresponds to a phase space point, or ontic state of the system. Traditionally, the

ontic state might be associated with a pair of position- and momentum- coordinates, λ = (q, p),

but any pair of complementary quadratures would to. The appearance of negative values of the

distribution in parts of phase space is often considered a signature of non-classical behaviour.

However, negativity in one basis does not imply that there doesn’t exist a basis in which the

representation is non-negative, and Wigner negativity has been found to be neither sufficient,

nor necessary for non-classicality [70].
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Figure 3.5: Wigner quasi-probability distribution. (a) A single-quantum Fock state has

a negative dip in the centre of the Wigner-distribution, yet both quadratures remain non-

negative and show a double-peaked structure. (b) Two-dimensional projection of the Wigner

distribution.

Adopting a more general framework, a quasi-probability representation of (a subset of)

quantum theory is non-negative, if the distribution µ is non-negative for all quantum states and

the response function ζ is non-negative for all measurements. By definition, a quasi-probability

distribution is noncontextual, since µ depends only on the density matrix and ζ only on the

POVM element. Noncontextual, positive phase-space distributions, however, cannot reproduce

quantum predictions, see Sec. 3.3. Any viable ontological model for quantum mechanics must

thus either feature negative probabilities at the ontic level, or be contextual [70].

3.4 Paradoxes and Basic Games

Many of the counterintuitive phenomena observed in quantum systems can be phrased as

logical paradoxes—a set of conditions that cannot be satisfied by any classical system. These

formulations reveal most clearly the contrast between classical and quantum systems, but they

rely on idealized assumptions, such as perfect correlations or exact equivalences. In order to

make them experimentally robust, they are used to derive inequalities, which have the form of

73



games, played by two or more parties, where quantum systems achieve an improvement over

the best classical strategy, which represents the bound of the inequality. These games also often

act as primitives in the context of quantum cryptography, computation, communication, or for

foundational questions.

3.4.1 Quantum Teleportation

Quantum teleportation uses Bell-nonlocal entangled states as a resource for transmitting quan-

tum information without transmitting the physical quantum system that carries the infor-

mation. What is teleported is information, not matter. Consider Alice and Bob sharing a

maximally entangled two-qubit quantum state, such as the Bell state ∣Ψ−⟩ab, and a third party,

Charlie, prepares a state ∣ψ⟩c that he wishes to send to Bob. The joint-state of Alice, Bob and

Charlie can be written as

∣Ψ−⟩ab ⊗ ∣ψ⟩c =
1

√
2
(∣01⟩ − ∣10⟩)ab ⊗ (α∣0⟩ + β∣1⟩)c

=
1

2
(∣Φ+⟩ac (−β∣0⟩ + α∣1⟩)b + ∣Φ−⟩ac (β∣0⟩ + α∣1⟩)b +

∣Ψ+⟩ac (−α∣0⟩ + β∣1⟩)b + ∣Ψ−⟩ac (α∣0⟩ + β∣1⟩)b ) .

When Alice performs a joint measurement of AC in the Bell-state basis and obtains outcome

∣Ψ−⟩, then Bob’s state is projected onto the original state ∣ψ⟩c. For all other outcomes of Alice’s

measurement Bob has to apply a correction, which may be a bit-flip, a sign-flip, or both. To

complete the teleportation, Alice must communicate her measurement outcome to Bob, which

requires two bits of classical communication, see Fig. 3.6. Without this information, Bob’s state

is maximally mixed, and thus, although the teleportation happens essentially instantaneous,

special relativity is not violated, since the information becomes available only once the classical

information arrives, which necessarily travels at most at the speed of light. The classical

information itself, however is completely random and thus useless to an eavesdropper, who

does not also have access to Bob’s particle.

Moreover, Alice cannot even in principle know the state she is teleporting without destroying

it. This makes quantum teleportation particularly interesting for cryptographic applications.

For example, cluster-state quantum computation uses a chain (or more complex structure)

of pairwise entangled qubits and works by teleporting quantum information from one system

to the next. The actual computation happens “during” the teleportation by using the error-

correction step to implement a quantum operation on the teleported qubit. This can be used

for so-called blind quantum computation [76], where Charlie prepares an input that he sends

together with a set of measurement instructions to Alice to perform a cluster-state quantum

computation. Since Alice cannot read the qubits without destroying it, it becomes possible to

have a computer perform a computational task without the computer knowing the input, the

output, or the kind of computational task that it is performing9.

9This is a step beyond what is possible with obfuscation algorithms in classical computing, which merely
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Figure 3.6: Quantum Teleportation. Alice and Bob share a maximally entangled state

∣Ψ−⟩ab and Charlie prepares a qubit ∣ψ⟩ = α∣0⟩ + β∣1⟩ that he wants to teleport to Bob. Alice

performs a bell-state measurement on her part of the shared entangled state together with

Charlie’s qubit, and sends the outcome as a two-bit message to Bob. Depending on Alice’s

outcome, Bob applies a correction to his qubit and obtains Charlie’s original state. Notably,

Alice cannot know the qubit that is teleported, since such a measurement would destroy this

state. This protocol is the basis for superdense coding and entanglement swapping, see text.

Superdense Coding

Superdense coding [77] is in some sense the inverse of quantum teleportation. Whereas tele-

portation is used to transmit a qubit using shared entanglement and two classical bits of

communication, superdense coding is used to transmit two classical bits using shared entangle-

ment and one qubit of communication. In the scenario above, Alice can transform the shared

state ∣Ψ−⟩ab into any of the four Bell-states by means of bit- and sign-flips on her qubit alone,

thereby encoding two classical bits. She then sends her qubit to Bob, who performs a Bell-state

measurement to decode the two bits. It has been shown that two bits is the maximum that

can be transmitted using a single qubit [77].

Entanglement Swapping

In an important extension of quantum teleportation, Charlie, instead of a pure quantum state,

gives Alice one half (C) of an entangled state and keeps the other half (D). The rest of the

protocol remains the same and we can write the joint state of Alice (A), Bob (B) and Charlie

(CD) as

∣Ψ−⟩ab∣Ψ
−⟩cd =

1

2
(∣Φ+⟩ac∣Φ

+⟩bd + ∣Φ−⟩ac∣Φ
−⟩bd − ∣Ψ+⟩ac∣Ψ

+⟩bd + ∣Ψ−⟩ac∣Ψ
−⟩bd) . (3.11)

Hence, Alice’s Bell-state measurement on the system AC also projects the system BD onto a

Bell state. As before, the protocol requires classical information about Alice’s measurement

outcome to apply appropriate local error correction. Since the no-cloning theorem prevents

hide the computation, but cannot hide input and output.
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noiseless amplification of quantum information entanglement swapping plays a central role in

long-distance quantum cryptography [78, 79]. Charlie and Bob are able to share entanglement

over a usually prohibitively large distance by breaking it up into smaller segments, and us-

ing entanglement swapping and quantum memories. The latter are required to contend with

unavoidable losses and inefficiencies.

3.4.2 GHZ Paradox and Multipartite Entanglement

Using multipartite entangled states, it is possible to demonstrate Bell-nonlocality based on

a simple logical contradiction, “without inequalities” [80]. Consider three parties who each

receive an input bit, denoted X,Y,Z, respectively and each can produce a ±1-valued output,

denoted A,B,C, respectively, such that

A0B0C0 = 1

A1B1C0 = −1

A1B0C1 = −1

A0B1C1 = −1 .

(3.12)

Here, Ps denotes the outcome for party P for setting s. If the parties are generating their outputs

using a pre-arranged strategy and shared classical randomness, but without communicating, it

is impossible for them to satisfy all four requirements. Indeed, the best such a Bell-local model

can do is to satisfy three of the four. An easy way to see the contradiction is by multiplying all

four equations, such that the left-hand side is a product of squares, which must be +1, while

the right-hand side equals −1 [81]. Using instead a shared a GHZ-state 1
2 (∣000⟩ + ∣111⟩), to

generate the outputs as the results of measurements of σx (for input 0) and σy (for input 1),

all four requirements ideally satisfied exactly.

The GHZ paradox can be turned into an experimentally testable inequality, known as the

Mermin-Ardehali-Belinskii-Klyshko inequality [82]

∣⟨A0B1C1⟩ + ⟨A1B0C1⟩ + ⟨A1B1C0⟩ + ⟨A0B0C0⟩ ≤ 2 , (3.13)

where ⟨AxByCz⟩ = ∑a,b,c abcP (a, b, c∣x, y, z) denotes the joint expectation value of Ax,By, and

Cz. The GHZ-state violates this inequality up to the algebraic maximum of 4. Although a

violation of inequality (3.13) demonstrates Bell-nonlocality, it does not demonstrate genuine

3-partite entanglement. A violation could instead be obtained from measurements on a statis-

tical mixture of bipartite entangled states with a classically correlated third particle [83]. To

demonstrate genuine tripartite Bell-nonlocality, Svetlichny derived an inequality that cannot
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be violated by any states that are only bipartite entangled [81, 83, 84]

Ssvet = ∣⟨A0B0C0⟩ + ⟨A0B0C1⟩ + ⟨A0B1C0⟩ + ⟨A1B0C0⟩−

⟨A1B1C0⟩ − ⟨A1B0C1⟩ − ⟨A0B1C1⟩ − ⟨A1B1C1⟩∣ ≤ 4

= Schsh(AB)C0 + S
′
chsh(AB)C1 ≤ 4 .

(3.14)

This inequality can be interpreted as a frustrated network of correlations [83]. In the case where

Charlie’s input is 0, Alice and Bob play the CHSH game, while for 1 they play the CHSH’ game

(with reversed inputs) [85].

3.4.3 Hardy’s Paradox

In the spirit of the GHZ paradox, one can also derive a logical contradiction for only two qubits.

Hardy’s original presentation [86] relied on two overlapping interferometers, one for an electron

and one for a positron, which are arranged such that electron and positron would be expected

to annihilate in two of the arms, similar to the Elitzur-Vaidman bomb-test [87]. This narrative,

however, rather complicates the paradox which applies to arbitrary two-qubit entangled states

(except maximally entangled) [88]. A simplified version in terms of black-boxes has been given

by Mermin [89] and, in terms of quantum cakes by Kwiat et al. [90].

Formally, Hardy’s paradox can be summarized by the incompatible probability assignment

P (−1,+1∣0,1) = 0 (3.15a)

P (+1,−1∣1,0) = 0 (3.15b)

P (+1,+1∣0,0) = 0 (3.15c)

P (+1,+1∣1,1) > 0 , (3.15d)

where P (a, b∣x, y) denotes the probability for output a for Alice and b for Bob, given input x

for Alice and y for Bob. Equation (3.15c) implies that, whenever both settings are 0, Alice

and Bob never both get outcome +1. Equation (3.15b) and (3.15c), respectively, show that

whenever only Alice’s setting is 1, she never gets output +1 and whenever only Bob’s setting

is 1, he never gets output +1. Classically, i.e. in a Bell-local model, this would imply that

also when both inputs are 1, the Alice and Bob will never both get outcome +1. Quantum

mechanically, however, the probability for this event can be up to ∼ 9%, while keeping all other

probabilities zero.

As in the GHZ case, this is not yet experimentally testable since it relies on idealized

assumptions. Following Mermin [89], however, it can be turned into an inequality

P (1,1∣1,1) − P (0,1∣0,1) − P (1,0∣1,0) − P (1,1∣0,0) ≤ 0 , (3.16)

which is a form of a CH inequality [91]. Hardy’s paradox is nonetheless a beautifully clear

illustration of the failure of counterfactual reasoning in quantum mechanics.
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3.4.4 Leggett-Garg and Macrorealism

With their paper “Quantum mechanics versus macroscopic realism: Is the flux there when

nobody looks?”10, Leggett and Garg [93] aimed to devise an experimental test for whether our

world adheres to macrorealism—the view that macroscopic objects have definite properties,

independent of, and undisturbed by observation. This is a view held, for example, by objective

collapse models, which postulate that the quantum description breaks down at some scale,

and superpositions of macroscopic objects cannot be sustained. When an object counts as

macroscopic is not exactly well-defined but is typically considered a trade-off between the

mass [94] or energy [95] of the object, and the timescale over which a superposition can be

maintained. Experimental tests of macrorealism thus effectively amount to observing and

maintaining superposition states of macroscopic objects, and provide a promising route towards

testing such models [96–99].

Specifically, Leggett-Garg’s macrorealism is composed of three assumptions [96]: macro-

realism per se, non-invasive measurability and induction. Macrorealism per se demands that

a macroscopic system, which could be in a number of macroscopically distinct states, always

occupies exactly one of these states. What exactly counts as “macroscopically distinct states”

is left open and might well be theory-dependent, although there are some arguments pertaining

to coarse-grained measurements [100]. Non-invasive measurability asserts that it is in prin-

ciple possible to determine the state of the macroscopic system without disturbing it in any

way. Induction is the assumption of a temporal order and causal arrow, such that later events

cannot influence earlier events. Although non-invasive measurability is closely entwined with

macrorealism per se, the former is not a consequence of the latter (with Bohmian mechanics as

a counter example) [97]. Leggett and Garg then consider a series of measurements of the same

observable Q, performed at three different times on a single quantum system to derive what is

now known as Leggett-Garg inequalities, which are satisfied by any macrorealistic theory, see

Fig. [93].

⟨Q1Q2 +Q2Q3 +Q1Q3⟩ ≥ −1 (3.17a)

NIM
Ð→ ⟨Q1Q2⟩12 + ⟨Q2Q3⟩23 + ⟨Q1Q3⟩13 ≥ −1 , (3.17b)

where ⟨ · ⟩ij is the expectation value when only the measurements at time i and j are actually

performed. The step from Eq. (3.17a), which is trivially satisfied, to Eq. (3.17b), requires that

removing one of the measurements does not change the joint statistics of the other two, which

is a consequence of non-invasive measurability (NIM). Focusing on this crucial feature allows

for a much stronger argument than Leggett-Garg inequalities. Specifically, Ref. [96] introduced

the notion of no-signaling in time, which is satisfied if a measurement does not change the

statistics of future measurements. No-signaling in time fails exactly for the quantum interfer-

ence terms [101] and, together with the causal arrow, is equivalent to macrorealism [99]. This

10Inspired by Einstein’s famous question “is the moon there when nobody looks?’ [92], which was intended
to challenge the idea that there might be no objective reality at all, see Chap. 4 for a detailed discussion.

78



is in contrast to Leggett-Garg inequalities, which are necessary but not sufficient for macro-

realism11. The fact that the system is macroscopic (whatever that means) has not been used

anywhere in the argument, and any derived constraints thus hold independent of the system

size. This confirms the intuition ruling out macrorealism comes down to observing quantum

interference in a system large enough to be considered macroscopic. Hence, experiments such

as molecule interferometry [103] or optomechanical interference, see Appendix C serve a very

similar purpose to direct violations of no-signaling in time in a macroscopic qubit system, such

as a superconducting circuit [104].

Recall that Leggett-Garg compare the joint expectation value of two temporal measurements

in the situation where a third measurement is or is not performed, i.e. a change of measurement

context. As pointed out in Ref. [97], a macrorealistic model is in fact a Kochen-Specker contex-

tual model for the considered macroscopic observables. This reveals an interesting connection

to the Kochen-Specker theorem, which shows that there can be no ontological model that is

noncontextual and outcome-deterministic for all measurements. Indeed, the KBCS inequal-

ity to test Kochen-Specker noncontextuality shares much of the structure of a Leggett-Garg

inequality and is based on five measurements of the same observable at different times on an

evolving quantum system. There is also a close connection between a violation of no-signaling

in time (or a Leggett-Garg inequality) and the appearance of pre-and post-selection paradoxes,

see Sec. 3.5. It has been argued that such paradoxes require a measurement between pre- and

post-selection that is invasive at the ontic level, but operationally undetectable (i.e. there is no

difference in the statistics between the cases where the measurement is performed or not) [105].

Finally, the set of temporal quantum correlations is not equivalent to that of spatial correla-

tions, such that, for example, monogamy of entanglement, which is a central concept for spatial

entanglement, does not hold in the temporal analogue.

3.5 Pre- and Post-Selection Paradoxes

When a quantum system is prepared (or pre-selected) in some state ∣ψ⟩, and then post-selected

(i.e. conditioned on a certain outcome of a later measurement) in the state ∣φ⟩, quantum theory

can give “paradoxical” predictions intermediate measurements. Specifically, in the case of so-

called logical pre- and post-selection paradoxes (where probabilities only take values 0 and 1),

the paradox is in effect a conflict with Kochen-Specker noncontextual ontological models [69,

106, 107].

Consider the three box paradox [69, 105, 108, 109], where a ball can be in any of three

boxes, represented by the states ∣1⟩, ∣2⟩ and ∣3⟩. At the beginning of the game the system is

prepared in the state (∣1⟩+∣2⟩+∣3⟩)/
√

3 (e.g. by placing the ball in box 1 and shuffling the boxes

appropriately). An observer then gets to check either if the ball is in box 1 or if it is in box 2.

11The reason for this is that the set of macrorealistic probabilities is a lower-dimensional subset of the set
of all temporal quantum correlations (defined by the assumption of the arrow of time). As a consequence,
the boundary cannot be formulated in terms of inequalities (i.e. hyperplanes) [102]. In contrast, Bell-local
correlations are an equal-dimensional subset of the set of spatial quantum correlations, and the boundary is
exactly given by the Bell inequalities [99].
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Finally, the system is postselected in the state (∣1⟩+∣2⟩−∣3⟩)/
√

3. The intermediate measurement

of box 1 corresponds to {∣1⟩⟨1∣, ∣2⟩⟨2∣+ ∣3⟩⟨3∣}, and that of box 2 to {∣2⟩⟨2∣, ∣1⟩⟨1∣+ ∣3⟩⟨3∣}. In either

case, the second measurement outcome can be decomposed in a way that is orthogonal to the

pre- or post-selected state and thus never occurs [106]. Hence, whenever the observer checks

box 1, she finds the ball there, and whenever she checks box 2, she finds the ball there. In

other words, the answer she gets depends on the question she asks12, which already has a very

strong contextuality flavour.

However, a priori this does not constitute a proof of the Kochen-Specker theorem, which is

concerned with prepare-and-measure experiments, see e.g. Ref. [69, 106] and references therein.

On the other hand, logical pre- and post- selection paradoxes are related to proofs of the theorem

when considering the intermediate measurements and the final post-selection as counterfactual

alternatives [69, 106]. In the paradox scenario itself, however, the intermediate measurement

could conceivably disturb the system enough to encode information about the measurement

setting, thereby changing the post-selection probability. In fact, any noncontextual model for

a pre- and post-selection paradox must involve measurement disturbance [69, 105]. It has been

shown, however, that the required form of disturbance is itself incompatible with noncontex-

tuality [69]. In particular, since pre- and post-selection are non-orthogonal, the intermediate

measurement must disturb the system in a way that the post-selection changes from being pos-

sible to being impossible. Specifically, they rely on transformation contextuality and show that

the von Neumann state-update rule corresponds to a transformation that sometimes leaves the

state unperturbed [69]. The proof thus crucially relies on the von Neumann state update and

that intermediate probabilities are 0/1-valued.

3.5.1 Weak Values

In the case where the intermediate measurement (of observable A) between pre- and post-

selection is weak, one can define the so-called weak value [110]

Aw ∶=
⟨ψ∣A∣φ⟩

⟨ψ∣φ⟩
. (3.18)

For ∣ψ⟩ = ∣φ⟩, this definition reduces to the expectation value ⟨A⟩. Considering a von Neumann-

type measurement, the weak value appears as a first-order approximation in the coupling

strength, of the relative change in the reduced probability distribution of the meter. In con-

trast to the expectation value, the weak value Aw is in general complex valued, with the real

part Re[Aw] corresponding to the average shift in the meter’s probability distribution, and the

imaginary part related to the backaction on the system. Consequently weak values have become

useful in testing noise-disturbance and joint measurement uncertainty relations, see Chap. 6.

They have also been related to the velocities of particles in Bohmian mechanics [111, 112] and

used in quantum state tomography and parameter estimation, see Ref. [113–115] for a more

detailed discussion of weak values and their applications.

12In particular, “the ball is in box 2” is not a possible answer to the first question.
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In the case where pre- and post- selection states are almost orthogonal (i.e. ⟨ψ∣φ⟩ ≪ 1), the

weak value can get arbitrarily large, while the probability of observing these events becomes

arbitrarily small. In particular, this allows for so-called anomalous weak values, which are larger

than the largest (or smaller than the smallest) eigenvalue of A. Weak values are a quite peculiar

statistical construct based on post-selection, which can lead to a variety of strange effects [116].

Hence, there is a lot of controversy about what exactly (if anything) is genuinely non-classical

about weak values. The imaginary part, for example, appears also in subsets of quantum

mechanics that admit a noncontextual (i.e. classical) model [14, 117]. Similarly, anomalous

values, which have been attributed much physical significance [109, 110], occur as statistical

anomalies in classical weak value models [118], typically in conjunction with measurement

disturbance [114, 118–121].

There is, however, an interesting connection between weak values, contextuality and mea-

surement disturbance. For example, when the intermediate measurement in a logical pre- and

post-selection paradox is weak, then the paradox must involve anomalous weak values [69].

Any model that can explain anomalous weak values13 must either violate outcome determinism

for the projective measurements (e.g. in a ψ-ontic model), and/or be contextual for either the

weak measurement or the induced disturbance [122]. Related to this is the observation that

an anomalous weak value for A implies, as a consequence of normalization, that at least one

projector in the spectral decomposition must be assigned a negative weak value. This suggests

an intriguing parallel to negative regions in the Wigner quasi-probability distribution [123],

which is also related to the failure of noncontextual models.

3.5.2 Classical Anomalous Weak Values

One of the results that spurred a lot of critical and heated discussion about the status of weak

values is an example of anomalous weak values appearing in a pre- and post- selected coin-

flipping experiment [120]. In this thought experiment Alice repeatedly hands Bob a coin, heads

up (the preselection). Bob then performs a noisy measurement of the coin and, depending

on the outcome, might or might not flip the coin before handing it back. Alice then keeps

only those cases where the coin was tails up (the postselection) and finds that the conditional

average of measurement outcome divided by the measurement strength—the “classical weak

value” [120]—can take anomalously large values, just like the quantum counterpart. Of course,

a noisy classical measurement is different from a weak quantum measurement (e.g. in the

information-disturbance tradeoff), but the purpose of the example is merely to demonstrate

that weak values can arise as a statistical artefact in an arguably classical model.

Curiously, just like in the case of the three-box paradox, the model features measurement

outcome-dependent disturbance. In a follow-up paper [118], the authors discuss the general

conditions for the occurrence of an anomalous post-selection shift, where conditioning on the

final state increases the shift of the meter compared to the unconditional case. They show that

13With the specific information-disturbance trade-off for weak quantum measurements, and under the as-
sumption that post-selection can be treated as a projective measurement.
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in the general 3-variable (ψ, s, φ) dichotomous model, where s is the outcome of the intermediate

measurement, the conditional independence of φ and s given ψ is sufficient to ensure that there

is no anomalous shift. In other words, for an anomalous shift to occur the final measurement

must be correlated to the intermediate measurement in a way that is not only due to the initial

state ψ. In particular, this implies that in an ontological model, there must be some disturbance

at the ontic level for an anomalous post-selected shift to occur [118], which agrees with previous

results [105]. The coin-flip model is an example for such a correlated model.

Leggett-Garg

Weak values also appear naturally in the context of Leggett-Garg inequality tests using weak

measurements (see Sec. 3.4.4). Specifically, Leggett-Garg inequalities are violated if and only

if the same data features anomalous weak values [124, 125]. Recall that the assumptions of

Leggett-Garg are that a macroscopic system (such as a coin) is always in a well-defined state

(macroscopic realism), which can be determined by a non-invasive measurement (non-invasive

measurability). Although the coin in Ref. [120] is arguably in a definite state at any time,

the example features correlated measurement disturbance, which violates the non-invasiveness

criterion. This allows for anomalous weak values and at the same time, following Ref. [125],

the Leggett-Garg value is 2δ
1−δ − 2δ + 1, which violates the Leggett-Garg inequality for any value

of the disturbance 1 − δ.

Weak Value Amplification

When pre- and post- selected states are almost orthogonal the weak value can in principle

become arbitrarily large14, which has led to the suggestion that it might be possible to use this

so-called weak value amplification— to amplify weak signals. Indeed, many experiments report

such an effect [126, 127], while, at the same time, statistical analysis suggests that methods

which use only a fraction of the data (the postselected part) cannot outperform methods that

use the full dataset [128, 129].

As so often, the disagreement comes down to the definitions and performance metrics used.

Simply put, the goal of a weak value experiment is to concentrate most of the information into

a small fraction of the events, which are more easily detected, and ignore the rest. Although a

large part of the relevant information can be retained in this way [130], the weak value method

can only match the performance of a postselection-free method in the limit of an infinitely

weak measurement [129]. On the other hand, if the relevant resource is the measured particles

rather than the input particles (such as in optical schemes, since photons are cheap), then

the postselection probability is irrelevant and the concentration of information implies that

the weak-value method performs better [131]. A rigorous analysis of postselected probabilistic

quantum metrology can be found in Ref. [132] and an accessible discussion in Ref. [129].

14It has been argued that the contributions of higher order terms become significant in the limit where the
two states are close to orthogonal such that it may not be possible to reach arbitrarily large values [115].
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Another subtle aspect to the comparison is whether the final post-selection is interpreted

as simply discarding data, or as an additional measurement. In the latter case, there is an

advantage when compared to an experiment without the final measurement. Moreover, if

photons that “fail” the post-selection can be recycled, the number of interactions between

system and meter can effectively be increased and thus lead to an advantage over schemes

without post-selection, but this might again be an unfair comparison. On the more technical

side, weak value amplification typically performs worse even in the presence of noise [129].

However, there are also some noise models (such as 1/f noise) where it is beneficial [130, 133].

Finally, it might be the case that the optimal estimators (for the non-postselected experiment)

cannot be implemented or that the initial state cannot be chosen optimally, in which case the

optimal post-selection can still help.

In summary, while there seems to be no fundamental advantage in using weak value ampli-

fication, there might be a technical one [113].
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of particles selected from a molecular library with masses exceeding 10 000 amu. Phys.

Chem. Chem. Phys. 15, 14696 (2013).

[104] Knee, G. C., Kakuyanagi, K., Yeh, M.-C., Matsuzaki, Y., Toida, H., Yamaguchi, H.,

Saito, S., Leggett, A. J. & Munro, W. J. A strict experimental test of macroscopic

realism in a superconducting flux qubit. Nat. Commun. 7, 13253 (2016).

[105] Maroney, O. J. E. Detectability, Invasiveness and the Quantum Three Box Paradox.

arXiv:1207.3114 (2012).

[106] Leifer, M. S. & Spekkens, R. W. Pre- and Post-Selection Paradoxes and Contextuality

in Quantum Mechanics. Phys. Rev. Lett. 95, 200405 (2005).

90



[107] Leifer, M. S. & Spekkens, R. W. Logical pre- And post-selection paradoxes, measurement-

disturbance contextuality. Int. J. Theor. Phys. 44, 1977–1987 (2005).

[108] Aharonov, Y. & Vaidman, L. Complete description of a quantum system at a given time.

J. Phys. A 24, 2315–2328 (1991).

[109] Vaidman, L. Weak-measurement elements of reality. Found. Phys. 26, 895–906 (1996).

[110] Aharonov, Y., Albert, D. & Vaidman, L. How the result of a measurement of a component

of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354

(1988).

[111] Wiseman, H. M. Grounding Bohmian mechanics in weak values and bayesianism. New

J. Phys. 9, 165–165 (2007).

[112] Kocsis, S., Braverman, B., Ravets, S., Stevens, M. J., Mirin, R. P., Shalm, L. K. &

Steinberg, A. M. Observing the Average Trajectories of Single Photons in a Two-Slit

Interferometer. Science 332, 1170–1173 (2011).

[113] Dressel, J., Malik, M., Miatto, F. M., Jordan, A. N. & Boyd, R. W. Colloquium: Under-

standing quantum weak values: Basics and applications. Rev. Mod. Phys. 86, 307–316

(2014).

[114] Dressel, J. & Jordan, a. N. Contextual-value approach to the generalized measurement

of observables. Phys. Rev. A 85, 022123 (2012).

[115] Wu, S. & Li, Y. Weak measurements beyond the Aharonov-Albert-Vaidman formalism.

Phys. Rev. A 83, 052106 (2011).

[116] Bub, J. & Brown, H. Curious properties of quantum ensembles which have been both

preselected and post-selected. Phys. Rev. Lett. 56, 2337–2340 (1986).

[117] Jozsa, R. Complex weak values in quantum measurement. Phys. Rev. A 76, 044103

(2007).

[118] Ferrie, C. & Combes, J. Classical correlation alone supplies the anomaly to weak values.

arXiv:1410.8067 (2014).

[119] Bliokh, K. Y., Bekshaev, A. Y., Kofman, A. G. & Nori, F. Photon trajectories, anomalous

velocities and weak measurements: a classical interpretation. New J. Phys. 15, 073022

(2013).

[120] Ferrie, C. & Combes, J. How the Result of a Single Coin Toss Can Turn Out to be 100

Heads. Phys. Rev. Lett. 113, 120404 (2014).

[121] Karanjai, A., Cavalcanti, E. G., Bartlett, S. D. & Rudolph, T. Weak values in a classical

theory with an epistemic restriction. New J. Phys. 17, 073015 (2015).

91



[122] Pusey, M. F. Anomalous Weak Values Are Proofs of Contextuality. Phys. Rev. Lett. 113,

200401 (2014).

[123] Dressel, J. Weak values as interference phenomena. Phys. Rev. A 91, 032116 (2015).

[124] Goggin, M. E., Almeida, M. P., Barbieri, M., Lanyon, B. P., O’Brien, J. L., White, a. G.

& Pryde, G. J. Violation of the Leggett-Garg inequality with weak measurements of

photons. Proc. Natl. Acad. Sci. USA 108, 1256–61 (2011).

[125] Williams, N. S. & Jordan, A. N. Weak Values and the Leggett-Garg Inequality in Solid-

State Qubits. Phys. Rev. Lett. 100, 026804 (2008).

[126] Hosten, O. & Kwiat, P. Observation of the spin hall effect of light via weak measurements.

Science 319, 787–790 (2008).

[127] Dixon, P. B., Starling, D. J., Jordan, A. N. & Howell, J. C. Ultrasensitive Beam Deflection

Measurement via Interferometric Weak Value Amplification. Phys. Rev. Lett. 102, 173601

(2009).

[128] Ferrie, C. & Combes, J. Weak Value Amplification is Suboptimal for Estimation and

Detection. Phys. Rev. Lett. 112, 040406 (2014).

[129] Knee, G. C., Combes, J., Ferrie, C. & Gauger, E. M. Weak-value amplification: state of

play. Quantum Measurements and Quantum Metrology 3, 1–7 (2016).

[130] Viza, G. I., Mart́ınez-Rincón, J., Alves, G. B., Jordan, A. N. & Howell, J. C. Experi-

mentally quantifying the advantages of weak-value-based metrology. Phys. Rev. A 92,

032127 (2015).

[131] Zhu, X., Zhang, Y., Pang, S., Qiao, C., Liu, Q. & Wu, S. Quantum measurements with

preselection and postselection. Phys. Rev. A 84, 052111 (2011).

[132] Combes, J., Ferrie, C., Jiang, Z. & Caves, C. M. Quantum limits on postselected, prob-

abilistic quantum metrology. Phys. Rev. A 89, 052117 (2014).

[133] Jordan, A. N., Mart́ınez-Rincón, J. & Howell, J. C. Technical Advantages for Weak-Value

Amplification: When Less Is More. Phys. Rev. X 4, 011031 (2014).

92



CHAPTER 4

On the Reality of the Wavefunction
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4.1 Introduction

“Do you really believe the moon exists only when you look at it?” - A.

Einstein [2]

E
instein’s famous question highlights how the development of quantum mechanics required

a radical rethinking of many beloved concepts of classical physics. In classical physics,

systems have objective properties and the moon is there even if we are not looking. The

behaviour of quantum systems, on the other hand, challenges this absolute objective reality.

Quantum systems do not adhere to traditional cause-and-effect relations (see Chap. 5), they are

necessarily disturbed by a measurement (see Chap. 6), and the measurement outcome depends

on what other measurements are made as well (see Sec. 3.3). It seems that a measurement

is not merely revealing a pre-existing reality anymore, but has a role to play in creating the

measurement outcome. In fact, it is not even clear what it means to talk about the reality of

a quantum system.

Much of this debate revolves around the quantum wavefunction wavefunction and the so-

called measurement problem. The wavefunction, or quantum state1 ψ is the central object of

the theory and it is used to describe and make predictions about any kind of quantum system.

The wavefunction is ubiquitous as a mathematical tool, and is used across the fields, from

quantum chemistry to molecular dynamics in biological processes, yet we don’t know what it

actually represents. According to the rules of quantum mechanics, the wavefunction evolves

with time in a continuous and deterministic way, until a measurement causes a spontaneous

1In the following these terms are used interchangeably, as are ∣ψ⟩ and ψ unless there is potential for confusion.
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and probabilistic collapse. Yet, quantum mechanics does not provide a rule for deciding which

prescription should be used in a given situation, which is known as the measurement problem

and is best illustrated at the example of Wigner’s friend, playing with Schrödinger’s cat.

Schrödinger’s cat is put into a box together with a device that may or may not kill the

cat. After a while, the state of the cat will have evolved from alive to a quantum superposition

of dead and alive at the same time. When Wigner’s friend opens the box, however, she will

not find the cat in this state, but instead quantum mechanics predicts that she will have equal

chance of finding the cat dead and finding it alive. Wigner, who is outside the laboratory, on the

other hand, has not performed a measurement himself, and must therefore describe the joint

state of the cat and his friend as a superposition of the cat being dead with the friend seeing a

dead cat, and the cat being alive with the friend finding the cat alive. The inconsistency of the

description given by Wigner and his friend is what many interpretations of quantum mechanics

aim to resolve. The way they interpret the wavefunction itself is they key difference between

these interpretations.

The many worlds interpretation of quantum mechanics, for example, always takes the out-

side perspective, and considers the un-collapsed wavefunction with its intricate superposition

and entanglement structure as a literal description of the world. A related interpretation,

known as Bohmian mechanics, also postulates that the wavefunction never collapses, but in

contrast to many worlds, interprets it as a field that guides particles through the world. On

the other end of the spectrum of realities are objective collapse models, which modify quantum

mechanics slightly to put a stochastic wavefunction collapse term directly into the Schrödinger

equation. This implies that above a certain level of complexity it is not possible to sustain

superpositions of macroscopic objects for significant amounts of time. Wigner’s friend would

thus never end up in an entangled state in the first place, but rather in a statistical mixture

of all possibilities. Somewhat more radical, one could give up the notion of objective reality

altogether, and consider the quantum state that Wigner assigns as purely a mathematical tool

for making predictions about the outcomes of potential measurements he could make on his

friend and the cat, rather than as a description of the actual state of affairs. This dodges the

collapse problem, since a wavefunction collapse is not a physical process anymore but rather

an update of probabilities in light of new evidence. This “shut up and calculate” doctrine of

the Copenhagen interpretation, as Mermin famously put it [3], works very well, but without

objective reality one loses the notion of explaining observations, which for many is too large a

price to pay.

This chapter is devoted to the nature of the quantum state and to an experimental approach

that narrows the wide range of available interpretations a little. Section 4.1.1 motivates this

question and provides necessary background, which is formalized in the ontological models

framework, introduced in Sec. 4.2. Section 4.3 is dedicated to various no-go theorems for

the ψ-epistemic viewpoint, where the wavefunction represents limited knowledge about an

underlying objective reality, and why they are not completely no-go after all. Section 4.4

then discusses how it is nonetheless possible to put constraints on all ψ-epistemic models, and
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Sec. 4.5 presents an experiment demonstrating that ψ-epistemic models cannot fully reproduce

quantum predictions, based on the publication [1]. Section 4.6 finishes with a discussion of

the alternatives that are left after the experiment and an outlook for future research. The

presentation here necessarily leaves out some of the mathematical details and related research,

and the interested reader is referred to an excellent review by Matthew Leifer [4].

4.1.1 Ontic or Epistemic

At the core of Einstein’s question is the desire for a realistic theory of the world, where realism in

this context means that there is an objective description of the world that is independent of our

observation2. Within such a theory, one can distinguish ontic states (from the Greek word ōn,

‘being’), or states of reality, and epistemic states (from the Greek word epistēmē, ‘knowledge’),

or states of knowledge. Ontic states represent objective, observer-independent properties of a

physical system, whereas epistemic states correspond to a probability distribution over a set of

ontic states, indicating incomplete knowledge of the actual state of the system [5].

This distinction between states of reality and states of knowledge is ubiquitous and in no

way unique to quantum mechanics. Consider, for example a single classical particle moving

on a line in one dimension [4, 5]. According to classical mechanics, this particle is completely

described by a point in phase space, which is a pair of position and momentum values—the

ontic state of the system. At any time t, the particle has a well-defined (objective) ontic state

(x(t), p(t)), see Fig. 4.1a. Typically, however, complete knowledge about the actual ontic state

(or phase-space point) of the system is not available. The system can then be described by

a probability distribution over the set of ontic states—an epistemic state, see Fig. 4.1b. This

epistemic state can still be used to make predictions about the system. However, the value that

the distribution assigns to every ontic state has no physical significance. It merely represents

the knowledge that an agent has about the system.

4.1.2 The Quantum Wavefunction

The above discussion about ontic and epistemic states has great significance in the question

what kind of object the quantum state is. On the one hand, a large fraction of interpretations

treat the wavefunction as an ontic object, on the other hand, treating it as a state of knowledge

elegantly avoids some of the conceptual issues of interpretations of quantum mechanics. For

example, if the wavefunction was ontic, a measurement would, in the standard formalism, lead

to a discontinuous change of objective reality. If the wavefunction was an epistemic state, on the

other hand, the measurement merely leads to a discontinuous change in the observer’s knowledge

in light of new experimental evidence. Indeed, classical theories which impose restrictions on

how much an observer can know (a so-called epistemic restriction), can reproduce a range of

quantum phenomena, including uncertainty relations, no cloning, teleportation and Gaussian

2The concept of realism has many more facets in the philosophy community, but the definition used here is
widely used in foundational physics.
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Figure 4.1: A classical point particle in position-momentum phase-space. (a) At

time t the particle occupies a well-defined ontic state (x(t), p(t)) which completely specifies its

properties (b) If complete knowledge about the actual ontic state of the system is not available,

then the system is described by an epistemic state—a probability distribution over the space of

ontic states (here phase-space). The epistemic states can be used to make statistical predictions

about the particle’s behaviour.

quantum mechanics [4–7]. Moreover, mixed quantum states are generally viewed as epistemic

objects, since they can be prepared as statistical mixtures of pure states (without recording

which state was prepared in each run) [5].

The distinction between ontic and epistemic interpretations of the wavefunction is made

precise in the ontological models framework, that will be introduced in Sec. 4.2. This allows us

to roughly distinguish three main classes of models with respect to the status they attribute to

the quantum wavefunction

• Realist ψ-ontic: The wavefunction is in direct correspondence with the ontic state of the

system, which might additionally include other ontic degrees of freedom.

• Realist ψ-epistemic: The quantum state represents knowledge or information about the

ontic states of the system. Quantum mechanics is a statistical theory of these epistemic

states in the spirit of classical Liouville mechanics with the restriction that complete

knowledge of the ontic states is impossible.

• Operationalist : The quantum state represents an agent’s knowledge or degree of belief,

not about the real state of the quantum system, but only about future measurement

outcomes. In these models there is no need for a deeper reality (i.e. no ontic states).

Although this distinction is based on the very general ontological models frameworks, which

is formulated with only a minimal set of assumptions, not all interpretations of quantum me-

chanics fit into this picture. Interpretations with more exotic ontologies that do not fit into the

framework will be discussed briefly in Sec. 4.1.3 and Sec. 4.6.1.

ψ-Ontic Interpretations

“No one can understand this theory until he is willing to think of Ψ as a

real objective field rather than just a ‘probability amplitude’.” - J.S. Bell [8]
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In the ψ-ontic view the quantum state is in direct correspondence with the objective real-

ity of the system. This either means that the wavefunction is the ontic state of the system, (i.e.

the phase-space point in Fig. 4.1a), or more generally, that it is part of the objective reality,

together with other relevant parameters. In either case, changing the wavefunction implies a

change of the ontic state (the reality) of the system. Hence the wavefunction itself is attributed

a real status. Bell himself proposed a ψ-ontic interpretation with ontic states consisting of ψ

together with an additional continuous parameter [9]. While the ψ-ontic view is quite popular,

it does entail a number of challenges, such as the measurement problem, Bell-nonlocality and

ontological excess baggage, which will be discussed in Sec. 4.2.3

ψ-Epistemic Interpretations

“[. . . ] wave fields were not to be interpreted as a mathematical description

of how an event actually takes place [. . . ], rather they are a mathematical de-

scription of what we can actually know about the system.” - A. Einstein [10]

Einstein held firm the believe that the wavefunction cannot be a complete description of the

reality of a quantum system, and moreover should only represent an experimenter’s limited

knowledge about the real state of the system [11]. In the realist ψ-epistemic view the quantum

state thus describes the probability of finding the system in a certain ontic state, similar to

Liouville mechanics, except that the ontic states are typically not even in principle empirically

accessible. The fact that classical statistical mechanics with the right restriction can demon-

strate similar behaviour as quantum systems is indeed one of the main motivations for this

class of interpretations [7, 12, 13]. The realist ψ-epistemic view (possibly not exactly in the

way Einstein imagined it) thus offers very intuitive explanations of a wide range of quantum

phenomena [5].

Anti-Realist Interpretations

“It is wrong to think that the task of physics is to find out how nature is.

Physics concerns what we can say about nature.” - N. Bohr [14]

At first sight Bohr’s view seems very similar to Einstein’s. Both agree that the wavefunc-

tion should not directly describe the reality of a quantum system. In contrast to Einstein,

however, Bohr rejects the need for such an objective reality altogether. In this sense, interpre-

tations in this spirit are often called anti-realist3 and they ascribe a key role to agents and their

interaction with the world. The purpose of the theory in such an interpretation is generally

to help the agent make predictions about future measurement outcomes. Without objective

reality, the wavefunction is necessarily an epistemic object, and these interpretations thus re-

solve conceptual issues such as the wavefunction collapse in a similar way as realist ψ-epistemic

3The term anti-realist has a somewhat negative flavour to it, but it is simply meant to capture the fact
that these interpretations reject the notion of objective observer-independent realism. Recently, the term
participatory realism has been used to emphasize the role that agents play in these interpretations [15]. However,
the kind of “realism” featured in these interpretations is certainly non-standard and to what extent it fits into
a rigorous definition of realism will be up to philosophy to decide.
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interpretations. Moreover, by considering measurement as a primitive, they tend to deny the

need for an explanation to the other question of the measurement problem, (what counts as a

measurement). However, it seems rather unsatisfactory for our best physical theory to not say

anything about the actual physics.

4.1.3 Interpretations of Quantum Mechanics

“Quantum theory is the most useful and powerful theory physicists have

ever devised. Yet today, nearly 90 years after its formulation, disagreement

about the meaning of the theory is stronger than ever. New interpretations

appear every day. None ever disappear” - D. Mermin [16]

Today, there is a large number of active interpretations of quantum mechanics, which en-

joy varying popularity in different communities [17–19]. They span a diverse range of physical

narratives, yet building on ideas from Refs. [4, 15], they can be roughly classified according to

the status they attribute to the quantum wavefunction, see Fig. 4.2. Below is a brief summary

of a number of interpretations, which are also to some extent interrelated [20].

Copenhagen Interpretation. The Copenhagen, or orthodox interpretation of quantum me-

chanics is a loosely defined operational interpretation, based on the idea that the theory should

only make predictions for future measurement outcomes, and that physical systems do not have

well-defined properties before the measurement [21].

Ensemble Interpretation. The quantum state is a purely epistemic description of the phys-

ical properties of an ensemble of systems and has no meaning for individual systems [22, 23].

QBism. In Quantum Bayesianism or QBism quantum state represents an agent’s subjective

degree of belief about the probabilities of future events [24–26].

Information-Theoretic Interpretation. The central feature of quantum theory is that

the information content of a quantum system is fundamentally limited and the quantum state

represents a proposition about the system, rather than physical reality [27–29].

Relational Quantum Mechanics. The quantum state only describes the relation between

two quantum systems or the information that one system has about another system [30].

Bohmian mechanics. In this theory, also known as the de Broglie-Bohm “pilot-wave” the-

ory, quantum systems are considered to behave as classical-like particles with definite, objective

positions, which are deterministically guided by an ontic universal wavefunction [31, 32].

Collapse Models. Collapse models are ψ-ontic and consider the collapse a real, physical

process and postulate a modification of the dynamics of quantum mechanics by introducing a
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Figure 4.2: Classification of interpretations of quantum mechanics with respect to

the status they attribute to the wavefunction. The ontological models framework cap-

tures all interpretations which feature an objective, observer-independent reality, where mea-

surement outcomes are unique single events that are not relative to anything and there is

backwards in time causation. Realist interpretations outside this framework thus either fea-

ture retrocausal influences (such as the transactional interpretation and the two-state vector

formalism), or propose that more than one measurement outcomes is realized in a single ex-

periment (such as many worlds). Anti-realist interpretations on the other hand are necessarily

ψ-epistemic and interpret the wavefunction as an observer-dependent object that allows an

agent to make predictions about future measurement outcomes. ∗The consistent histories for-

malism is somewhat open to interpretation itself and could be seen as a retrocausal ψ-epistemic

interpretation, as a version of many worlds, or as an operational approach.

stochastic collapse term to the Schrödinger evolution, which becomes relevant only for large

systems [33–35].

Everett “Many-Worlds” Interpretation. The many-worlds interpretation takes the wave-

function and with it the superposition principle as a literal description of the world, where in

some sense every possible measurement outcome is instantiated [36].

Consistent Histories. The quantum state is an epistemic object that is used to assign

probabilities to various alternate histories of a quantum system [37, 38].

Modal Interpretations. This name refers to a class of realist ψ-ontic models where the

quantum state is regarded as a dynamical state that contains the full range of possible phys-

ical properties of a quantum system. The dynamical state always evolves according to the
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Schrödinger equation (i.e. does not collapse), and is supplemented by a value state that repre-

sents the actual values of these physical properties, which are well-defined at any time [39, 40].

Transactional interpretation. Building on the Wheeler-Feynman absorber theory this in-

terpretations identifies the evolution of a quantum system with a standing wave composed of

a retarded wave from the source and an advanced wave from the detector, both of which are

given an ontic status [41, 42].

Two-State Vector Formalism. Similarly to the transactional interpretation, the two-state

vector formalism considers an ontology consisting of a state vector for the pre-selection (prepa-

ration) and another state vector for the post-selection (measurement) [43].

Retrocausal Interpretations. Besides the transactional interpretation and the two-state

vector formalism, other retrocausal, or causally symmetric interpretations, motivated by time

symmetry of the underlying equations, have been proposed, mainly as a reaction to Bell’s

theorem [44–46].

Many Interacting Worlds. Quantum mechanics arises through repulsive interaction be-

tween a large number of classical worlds where systems have real objective properties, but the

wavefunction does not play a primary role [47].

Brukner. Brukner recently suggested an interpretation which is based on the premise that

there are no objective facts about the world, but any record is only meaningful relative to

some observer. This interpretation combines elements from a variety of generally anti-realist

interpretations [20].

Quantum Darwinism. Strictly speaking this is not an interpretation, but rather a mecha-

nism that explains how classical physics emerges out of a fundamentally quantum description

through decoherence and redundant information encoding in the environment. However, Zurek

emphasizes that the quantum state should be viewed as “mostly information”, placing this

approach close to the Copenhagen camp [48].

Just a Matter of Taste?

The debate about interpretations of quantum mechanics is often dismissed as a matter of phi-

losophy, without practical consequences. A notable exception, of course, are collapse models,

which are alternative theories that make predictions significantly different from quantum me-

chanics, and indeed have already been experimentally constrained [49]. However, even those

aside, the remaining contenders are far from untestable. As discussed in more detail below,

already Einstein pointed out that interpretations in which the wavefunction is the complete

description of physical reality are in conflict with locality assumptions. This was later strength-

ened by Bell, who showed that any realist interpretation of quantum mechanics was in conflict
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with local causality, see Chap. 5. Bell’s theorem had a large impact in quantum information

theory and is now the basis for quantum cryptography.

For interpretations of quantum mechanics, however, Bell’s theorem is a very general result

that poses a challenge, but can be accommodated in most interpretations. These interpretations

feature a vast variety of physical narratives and conceptually different approaches. This shapes

the ideas derived from them. ψ-ontic and ψ-epistemic interpretations, for example, suggest

quite different behaviour in the classical limit [4]. All of this makes it seem rather unlikely that

there should be no way to distinguish them in practice [15]. Indeed, the recent years have seen a

revival of interest in the interpretational question, with a number of results on classes of realist

ψ-epistemic interpretations [50–54], classes of realist interpretations in general [55] and “single-

world” interpretations [56]. Although all of these results rely on a number of assumptions and

address only subclasses of the targeted interpretations they clearly show that interpretations of

quantum mechanics are certainly more “experimental metaphysics” [57] than pure philosophy.

4.2 The Ontological Models Framework

The formal basis for discussing realist interpretations of quantum mechanics in the traditional

sense is the framework of ontological models first introduced in Ref. [11]. This framework is

based on a minimal set of assumptions about what can be considered objectively real. These

basic assumptions are also the basis of Bell’s theorem, which, using a few additional assump-

tions, ruled out “local hidden variable” models (cf. Chap. 5), which are an important special

case of what is captured by the ontological models framework. The term “hidden variable”,

however, is rather unfortunate and overly suggestive, since the ontic states in general need

not be hidden or might not even be any different from the wavefunction itself. The following

discussion of the framework focuses on the essential aspects, using pure states and projective

measurements, referring the reader to Ref. [4, 11, 58] for the general treatment (including mixed

states and POVMs) and mathematical subtleties.

The central assumption of the framework, realism, is captured in the existence of a set of

ontic states that completely specify the system. The quantum state merely represents limited

information about the ontic state occupied by the system. The ingredients can be summarized

as follows, see Fig. 4.3:

i) There exist a set Λ of ontic states λ, which completely specify the system.

ii) Every preparation of a quantum state ∣ψ⟩ actually prepares the quantum system in an

ontic state λ, sampled from a (classical) probability density µψ(λ) over the set of ontic

states—the epistemic state

iii) For each measurement M with outcomes {m} the observed measurement statistics depend

only on the ontic state via a response function ξM(m ∣ λ), but not on the quantum state
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∣ψ⟩. The conditional probability for outcome m when measuring M on ∣ψ⟩ is given by

PM(m ∣ ψ) = ∫
Λ
ξM(m ∣ λ)µψ(λ)dλ . (4.1)

iv) Additionally the model should reproduce quantum predictions (i.e. Born rule probabilities)

for the measurement M with eigenbasis {∣m⟩}

PM(m ∣ ψ) = ∣⟨m∣ψ⟩∣2 . (4.2)

While the above requirements are formulated for models of quantum mechanics, the ontological

models framework can also be used to describe ontological models for general operational the-

ories. Besides realism the ontological models framework implicitly assumes a temporal order

of events and a causal arrow with respect to this order. Otherwise the ontic state could not

screen off the measurement outcome from the quantum state as in Eq. (4.1). These assumptions

are also shared with Bell’s theorem, which, however, relies on additional assumptions about

the causal relation of two separate quantum systems, see Sec. 5.3.2. The ontological models

framework, on the other hand, is primarily concerned with prepare-and-measure experiments

on single quantum systems, where no locality questions arise. Everything more complicated

requires additional assumptions, such as rules for state-update upon measurement, when con-

sidering state-evolution within this framework.

Figure 4.3: The ontological models framework. Every preparation of the quantum state

∣ψ⟩ (here shown in the simplest form of a qubit on the Bloch sphere) actually prepares the

system in an ontic state λ, chosen at random from a classical probability distribution µψ in

the ontic state space—the epistemic state. The probabilities for each outcome {m} of the

measurement M are specified by the response function ξM and depend only on λ. For a model

to be viable, the response function must reproduce Born-rule probabilities when averaging over

lambda.

The ontological models framework is thus general enough to allow for
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• Measurement contextuality. Ontological models can be measurement contextual,

since the response function can depend on the full POVM M , rather than just the mea-

surement outcome m.

• Preparation contextuality. Ontological models can be preparation contextual, and do

not require that the preparation of a mixed state ρ corresponds to a unique measure µρ,

see Ref. [4] for details.

• Indeterminacy. Ontological models do not assume predetermination at the ontic level,

and measurement outcomes can result stochastically from the response function.

• Arbitrary ontic state space. There are no assumptions on the form and structure of

the ontic states and the ontic state space, other than that it is a measurable space.

Rigorous definition and subtleties Leifer, in Ref. [4], rigorously defines an ontological

model as a set (Λ,Σ,∆, ξ), where Λ is a measurable set with σ-algebra Σ. The function ∆

maps every quantum state ρ to a set ∆ρ of σ-additive probability measures µ∶Σ → [0,1] that

are non-negative (µψ(λ) ≥ 0) and normalized (µ(Λ) = 1). The function ξ maps every outcome

m of a POVM M to a measurable response function ξM(m ∣ · )∶Λ→ [0,1] that is non-negative

(ξM(m ∣ λ) ≥ 0) and normalized (∑m ξM(m ∣ λ) = 1 ∀M,∀λ). The model reproduces quantum

predictions if for every quantum state ρ

∫
Λ
ξM(m ∣ λ)dµ(λ) = Tr[mρ] ∀M,∀m ∈M,∀µ ∈ ∆ρ . (4.3)

Notably, this definition allows for both measurement contextuality (via the dependence of ξ on

M , not just m) and preparation contextuality (via the set ∆ρ).

4.2.1 The ψ-Ontic/ψ-Epistemic Distinction

In any model within the ontological models framework (ψ-ontic as well as ψ-epistemic), the

quantum state is a representation of limited information about the underlying ontic state of the

system; a coarse-grained picture of the real state of the system, which potentially lacks some of

the detail contained in the ontic states. The difference between ψ-ontic and ψ-epistemic is that

these coarse-grained patches are non-overlapping for a ψ-ontic model, but they might overlap

for a ψ-epistemic one, see Fig. 4.4.

More specifically, in a ψ-ontic model every ontic state belongs to a unique quantum state.

Consequently, any pair of non-identical (pure) quantum states ∣ψ⟩ and ∣φ⟩ is associated with a

pair of disjoint epistemic states µψ and µφ (in the general case every pair of measures from the

sets ∆ψ and ∆φ are disjoint), see Fig. 4.4b. In a ψ-ontic model, a change in the quantum state

thus necessarily comes with a change in the ontic state, and the quantum state is therefore

said to be “in direct correspondence with reality”. The converse4, however, need not be true

4This is the “completeness” question raised by Einstein, whether a quantum state is associated to a unique
“element of reality” (i.e. ontic state) [59]. Models which feature such a one-to-one correspondence between
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Figure 4.4: The ψ-ontic/ψ-epistemic distinction. (a) Two non-orthogonal quantum states

∣ψ⟩ and ∣φ⟩ on the Bloch sphere. (b) In a ψ-ontic interpretation the epistemic states are disjoint

for any pair of non-orthogonal quantum states. The quantum state is uniquely determined by

the ontic state. (c) In a ψ-epistemic model the probability distributions for two non-orthogonal

states may overlap and a single ontic state may be compatible with multiple quantum states.

in general and a single quantum state can be compatible with multiple ontic states. Moreover,

these ontic states can have a complicated internal structure, and the number of ontic states per

quantum state need not be constant either.

On the other hand, a model is ψ-epistemic if there is at least one pair of non-orthogonal

quantum states, whose epistemic states overlap, see Fig. 4.4c. This definition is much less

stringent than that of a ψ-ontic model and there are thus some important sub-classes. Most

notably, maximally ψ-epistemic models, where the overlap of epistemic states for any two non-

orthogonal states is large enough to provide a mechanism that fully explains why such quantum

states cannot be perfectly distinguished, as a result of a lack of information about the underlying

ontic states.

4.2.2 Distinguishing Quantum States

Consider two non-orthogonal quantum states ∣ψ⟩ and ∣φ⟩, which are assigned distinct state-

vectors, yet no single measurement can perfectly distinguish them in practice5. This curious

feature of quantum mechanics has an elegant explanation in a ψ-epistemic model, which was

nicely illustrated in Ref. [60] using a classical example, which is reproduced in Fig. 4.5. When

the two epistemic states µψ and µφ overlap, then a preparation of either state sometimes leaves

the system in the same ontic state. In all such cases there is no measurement that could

distinguish the two preparations.

The intuitive explanation of the indistinguishability of quantum states in terms of epistemic

overlap is indeed one of the main motivations for ψ-epistemic models. Moreover, it gives an

operational interpretation to the epistemic overlap as the residual indistinguishability when

quantum states and ontic states are thus called ψ-complete, and are a subclass of ψ-ontic models.
5To avoid too cluttered writing, this imperfect distinguishability of non-orthogonal quantum states is often

referred to as “indistinguishability”.
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all available (accessible and hidden) information is taken into account. To make this more

precise, and quantify how much of the observed indistinguishability can indeed be explained in

this way it is necessary to define measures of distinguishability of quantum states and classical

probability distributions. The quantum overlap ωq(∣ψ⟩, ∣φ⟩) of the states ∣ψ⟩ and ∣φ⟩ can be

defined as [58, 60, 61]:

ωq(∣ψ⟩, ∣φ⟩) ∶=1 − δq(∣ψ⟩, ∣φ⟩)

=1 −
√

1 − ∣⟨ψ∣φ⟩∣2 , (4.4)

where δq(∣ψ⟩, ∣φ⟩) =
√

1 − ∣⟨ψ∣φ⟩∣2 denotes the quantum trace-distance, a distance measure for

quantum states, see Sec. 1.1.3. Since the trace distance can be directly generalized to mixed

states, the measure ωq can be too. For two classical probability distributions one can use

the classical equivalent of the trace-distance, the variational distance δc(µψ, µφ) =
1
2 ∫Λ ∣µψ(λ) −

µφ(λ)∣ to define the classical overlap6 of the corresponding probability distributions or epistemic

states:

ωc(µψ, µφ) ∶=1 − δc(µψ, µφ)

=∫
Λ

min[µψ(λ), µφ(λ)]dλ . (4.5)

Figure 4.5: The ψ-epistemic explanation of imperfect distinguishability of non-

orthogonal quantum states. This example is reproduced from Barrett et al. [60]. (a)

Consider a red and a blue deck of cards, two distinct “states”, where the red deck only con-

tains cards of hearts and the blue deck only contains aces. Drawing a card from either deck at

random corresponds to preparing the respective state and the face of the card represents the

ontic state of the system after the preparation. (b) The probability distributions associated

with the preparation of the two states overlap at the ace of hearts. Whenever a preparation

results in this ontic state it is not possible to tell which deck it was drawn from. Hence, the

two decks cannot be distinguished perfectly from just the ontic states.

These measures are operationally motivated. The probability of success for distinguishing

the two quantum states ∣ψ⟩ and ∣φ⟩ using the optimal quantum measurement is 1−ωq(∣ψ⟩, ∣φ⟩)/2.

6This nomenclature might be somewhat confusing, but recall that the epistemic states are for all practical
purposes just classical probability distributions over some ontic state space Λ.
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On the other hand, the probability of success for distinguishing the two states using the optimal

measurement on the ontic level (i.e. using information about the actual ontic state, rather than

just the quantum state) is given by 1 − ωc(µψ, µφ)/2. The classical and quantum measures are

thus compatible in terms of their operational interpretation, and must satisfy

0 ≤ ωc(µψ, µφ) ≤ ωq(∣ψ⟩, ∣φ⟩) ≤ 1 . (4.6)

The first and last inequalities merely correspond to the normalization 0 ≤ ωc/q ≤ 1, while the

middle inequality implies that the classical overlap cannot be larger than the quantum overlap.

In other words, distinguishing two states based only on their quantum states cannot be easier

than based on the additional information about the actual ontic states. If this inequality was

violated then the two states would be less distinguishable in the model than according to

quantum theory and the model could not reproduce quantum predictions. Using the relation

between these overlap measures ontological models can be classified as

(i) ψ-ontic if (up to sets of measure zero)

ωc(µψ, µφ) = 0 ∀∣ψ⟩ ≠ ∣φ⟩ .

(ii) ψ-epistemic if

∃ ∣ψ⟩≠∣φ⟩ ∶ ωc(µψ, µφ) ≠ 0 .

(iii) maximally ψ-epistemic if

ωc(µψ, µφ) = ωq(∣ψ⟩, ∣φ⟩) ∀∣ψ⟩, ∣φ⟩ .

Maximally ψ-epistemic models saturate the middle inequality in Eq. (4.6), which means that

in such models all the indistinguishability of non-orthogonal states can be explained in terms

of overlapping classical probability distributions. At the other end of the spectrum are ψ-ontic

models, which feature absolutely no overlap of the probability distributions. These models thus

require a different mechanism to explain the imperfect distinguishability, commonly referred

to as coarse-grained measurements. Just like quantum states might correspond to a coarse-

grained preparation of ontic states, quantum measurements might only be able to reveal coarse-

grained information about these ontic states. Indeed, coarse-grained measurements seems to be

an common feature, albeit not necessarily involved in explaining indistinguishability, in most

ontological models, even including maximally ψ-epistemic ones such as Spekkens’ toy model [5].

All ontological models that do not fall in the two extreme categories are non-maximally

ψ-epistemic, and can only explain a fraction of the indistinguishability in terms of overlapping

probability distributions. As a figure of merit to quantify the relative amount of indistinguisha-

bility that a model can explain one can use the ratio of classical-to-quantum overlap

κ(ψ,φ) =
ωc(µφ, µψ)

ωq(∣φ⟩, ∣ψ⟩)
, (4.7)
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for a pair of non-orthogonal quantum states (such that ωq(∣φ⟩, ∣ψ⟩) > 0). In the limiting case of

a ψ-ontic model, the overlap ratio κ = 0 for every pair of states, while for the other extreme, a

maximally ψ-epistemic model κ = 1 for every pair of states. In any other case there is at least

one pair of states such that 0 < κ < 1. However, for such non-maximally ψ-epistemic models

there need not by any clear relation between ωc and ωq, other than the physical constraint

Eq. (4.6).

Rethinking ψ-Epistemicity

The notion of ψ-epistemicity, defined as everything that is not ψ-ontic, is very permissive, and

allows for some rather contrived models. Hence, a number of finer distinctions were introduced

and discussed in detail Ref. [4].

Sometimes ψ-ontic models are models where each pure state has some “region of the ontic

state space all to itself” [4]. Specifically, the support of each µψ contains at least one λ that

is not in the support of any other µφ. This notion is much stronger, excludes maximally ψ-

epistemic models and, curiously, proving that ontological models must be sometimes ψ-ontic

would imply much the same results as a proof that they must be ψ-ontic [4].

Pairwise ψ-epistemic models are ψ-epistemic for any pair of non-orthogonal quantum states.

While this gets rid of some of the more contrived models it is also a very strong notion.

Symmetric ψ-epistemic models were introduced in Ref. [62], and are such that the overlap

between two epistemic states depends only on the inner product of the corresponding quantum

states. In other words, states with similar inner product have similar classical overlap in an

appeal to rotational invariance.

4.2.3 Known Constraints

Although the formal ontological models framework is rather young, the study of realist interpre-

tations of quantum mechanics has a long history. Going back to Einstein famously challenging

whether ψ-complete interpretations could reproduce quantum predictions [11, 59], a number

of individual results have ruled out specific subclasses of ontological models. Some well-known

results for regarding ontological models include

i) EPR [59] / Einstein [11] incompleteness argument.

ii) All ontological models are Bell-nonlocal [63].

iii) All ontological models are Kochen-Specker contextual (Bell-Kochen-Specker theorem [9, 64]

and generalizations thereof [65]).

iv) The size of the ontic state space for sometimes ψ-ontic models is continuously infinite,

already for a single qubit [66–68].

All of these results were derived within the ontological models framework and are in fact closely

related, see Ref. [4]. For example, Bell’s theorem generalizes the EPR argument, and Kochen-

Specker contextuality generalizes Bell’s theorem. Moreover, many results implied by ψ-ontology

107



already follow from the impossibility of maximally ψ-epistemic models [4], which motivates the

importance of this class of models for providing an intuitive classical explanation for quantum

phenomena.

Incompleteness and the EPR Argument

EPR considered two parties, Alice and Bob, who share a maximally entangled quantum state.

Depending on the measurement that Alice performs on her part of the shared state, she steers

Bob’s system to a state from different ensembles. Assuming separability of the ontic state

space together with the assumption that the ontic state of Bob cannot depend on the choice of

measurement at Alice (a locality assumption) [69, 70] Einstein concluded that there must be

multiple quantum states compatible with a single ontic state.

Hence, there is a conflict between ψ-complete models and EPR’s notion of locality. The

latter, also referred to as the no-telepathy assumption [70] asserts that Bob’s ontic state is

independent of Alice’s measurement setting. This is different from Bell’s locality assumption,

which is concerned instead with the independence of Bob’s measurement outcome from Alice’s

measurement setting [71], see also Chap. 5. EPR’s original assumptions were relatively strong,

and phrased rather vaguely, see Ref. [70] for a detailed discussion. A cleaner, and also stronger,

version of the argument was given by Einstein in his correspondence with Schrödinger, as

discussed and formalized in Ref. [11]. This argument indeed suffices to establish a conflict with

all ψ-ontic, rather than just ψ-complete models.

Bell-Nonlocality

Bell’s theorem builds on the EPR argument, and demonstrates that any ontological model, ψ-

ontic or ψ-epistemic, that reproduces quantum predictions must be Bell-nonlocal [63, 72]. Note

that the notion of Bell-locality incorporates a series of assumptions, beyond the ontological

models framework, which capture classical notions of locality and causality, see Chap. 5 or

Ref. [73]. These additional assumptions are necessary to specify how two or more quantum

systems interact, and they are formulated in terms of statistical or causal constraints. Crucially,

however, Bell’s theorem makes no assumptions on the structure of the ontic state space and

thus applies to arbitrary ontological models.

Experimental violations of Bell inequalities imply that in order for ontological models to

reproduce quantum predictions, they must violate the classical notion of locality and causality.

Going beyond Bell-local models, it is shown in Chap. 5 that not even non-local ontological

models, which allow superluminal communication of measurement outcomes, can reproduce

quantum correlations.

Curiously, Ref. [4] showed that, using preparation contextuality of the maximally mixed

state, an argument similar to that of Einstein [11, 59], is in fact sufficient to prove that no Bell-

local ontological model can reproduce the predictions of quantum mechanics. The idea is to

use a steering argument to reinterpret a Bell-experiment as a prepare-and-measure experiment

for Bob’s quantum system, where the preparation procedure is given by Alice’s measurement.
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A version of Bell’s local causality assumption then implies that the response function separates

into a function that depends only on Alice’s measurement and one that depends only on Bob’s.

The preparation results in a maximally mixed state in case Alice “forgets” her measurement

outcome. Bell-locality now implies that the model must be preparation contextual for this

state, which is a contradiction [4].

Contextuality

The premise of noncontextuality is that if two experimental procedures (preparations, trans-

formations or measurements) are operationally equivalent (i.e. produce the same statistics in

every situation) then they should be represented in the same way at the ontic level [65]. The

discussion of contextuality in Sec. 3.3 can thus be interpreted as constraints on the possible

ontological models.

One of the earliest results in this space is the (Bell-)Kochen-Specker theorem [9, 64], which

showed that there can be no outcome-deterministic and measurement noncontextual models

for d ≥ 3. Viable models do, however, exist if either of these conditions is violated [4]. Using

the operational definition of contextuality in Ref. [65] it was further shown (in theory and

experiment) that quantum mechanics is also incompatible with the combination of measurement

noncontextuality and preparation noncontextuality [74]. Preparation noncontextuality in fact

implies outcome determinism for sharp measurements [65] and seems to be a more fundamental

feature, since there are preparation contextual models that are measurement-noncontextual (by

virtue of being outcome-indeterministic), but not vice versa [65].

Curiously, preparation noncontextual models must be maximally ψ-epistemic. This is based

on the simple argument that in a preparation noncontextual model the epistemic state of

a proper mixture of quantum states must be independent of the pure-state decomposition.

Decomposing the maximally mixed state into two sets that involve a pair of states that are non-

maximally ψ-epistemic thus implies that the corresponding epistemic states cannot be identical

and the model is preparation contextual. Furthermore, a maximally ψ-epistemic model must be

outcome-deterministic and measurement noncontextual, thus Kochen-Specker noncontextual.

The latter conclusion follows from the fact that the response-function for a measurement of φ

must be equal to 1 for every ontic state corresponding to φ, for every measurement containing φ,

and thus vanish everywhere else, see Ref. [75] for details. Turning the above argument around,

Kochen-Specker contextuality implies that there can be no maximally ψ-epistemic models,

which in turn implies preparation contextuality for the maximally mixed state. The Kochen-

Specker theorem, however is not enough to rule out non-maximally ψ-epistemic models [4].

Ontological Excess Baggage

The term ontological excess baggage was coined by Hardy to describe the observation that

the size of the ontic state space must be infinite even for a qubit [66]. Since a single qubit

∣ψ⟩ = α∣0⟩ + β∣1⟩ is specified by two continuous, complex-valued parameters α,β, there are

uncountably infinitely many distinct quantum states for a qubit. Any ψ-ontic model that
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reproduces the quantum predictions exactly7 thus requires continuously infinitely many ontic

states, since there must be at least one ontic state per quantum state [66]. Indeed, it is enough

for a model to be sometimes ψ-ontic to reach this conclusion [4]. For ψ-epistemic models, on

the other hand, this might not be a serious problem, since the underlying ontic state space

might be finite, even if specifying the exact probability distribution over this space requires

continuous parameters [4].

Montina further showed that the size of the ontic state space must also grow exponentially

with the number of systems [67]. Specifically, for a Hilbert space of dimension d, any ontological

model with Markovian evolution must contain at least 2d − 2 real parameters, and contain

something that looks and behaves like a quantum state [68]. If the Markov assumption is not

made, the ontic state space might be smaller, which they demonstrate by constructing a one

dimensional model for a qubit.

4.2.4 Examples of Ontological Models

Part of the motivation for studying ontological models of quantum mechanics comes from the

fact that there are numerous examples of such models in the literature. These were typically

developed as a proof-of-principle to demonstrate that such models can reproduce certain aspects

of quantum mechanics. Such examples are very valuable for understanding the consequences of

giving up various assumptions in no-go theorems for ontological models, such as Bell’s theorem.

One of the earliest examples is Bell’s ψ-ontic model that he introduced to demonstrate

that deterministic hidden-variable models can indeed reproduce quantum predictions [9]. The

ontic state in this model consists of the quantum state and an additional continuous param-

eter, which essentially encodes the measurement outcome probabilities. The models is thus

ψ-complete and, although originally formulated as a measurement-contextual model for or-

thogonal measurements on qubits, it has since been generalized to higher-dimensional systems,

and can also be turned into a Kochen-Specker noncontextual model [4].

An indeterministic, ψ-complete version of Bell’s model is the Beltrametti-Bugajski model [76].

In contrast to Bell’s model the measurement outcome probabilities are not encoded in an ontic

state using a deterministic response function, but instead obtained directly from an indeter-

ministic response-function that directly implements the trace-operator. The model is thus

measurement noncontextual, and since the ontic states are simply the pure quantum states, it

is preparation contextual.

One of the most influential ontological toy models was introduced by Spekkens to demon-

strate that a very simple (maximally) ψ-epistemic model for qubits can give intuitive explana-

tions for a range of quantum phenomena [5]. The model reproduces the behaviour of a qubit

for σx, σy, σz-preparations and measurements using an ontic state space of only four states. The

crucial aspect is a kind of uncertainty principle, called the knowledge-balance principle, which

asserts that only “half” of the information about the ontic state of the system can be known

7If the model is only assumed to reproduce quantum predictions to within ε, it might be possible to relax
this to a countable subset.
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at any time. The model can be generalized to larger dimensions and, in odd dimensions, was

found to correspond to the stabilizer formalism of quantum mechanics [4]. It has also been

generalized to continuous variables, where it recovers Gaussian quantum mechanics [7].

Another interesting example is the Kochen-Specker model for orthonormal measurements

on a single qubit, originally introduced as a counterexample to the Kochen-Specker theorem in

two dimensions [64]. Again this model is maximally ψ-epistemic [4] and the ontic state-space

is simply the Bloch-sphere. A pure quantum state ψ is associated with a probability measure

in the hemisphere that has ψ at its pole, with a density proportional to the cosine of the

angle between ψ and the corresponding ontic state λ. The response functions are deterministic

functions of the angle between ontic state and measurement direction, 1 for all ontic states in

the hemisphere with the measurement direction as its pole, and 0 otherwise, see Ref. [77] for

more details.

4.3 ψ-Ontology Theorems

“The great tragedy of Science—the slaying of a beautiful hypothesis by an

ugly fact [. . . ]” - T. H. Huxley [78]

Realist ψ-epistemic models provide some of the most intuitive explanations for a range of

quantum phenomena. Although there are no fully worked-out interpretations of this kind,

the existence of toy models for Pauli measurements on qubits and other fractions of quantum

mechanics motivates the question whether such models can be extended to all of quantum me-

chanics. For the longest time it was generally believed that questions about interpretations of

quantum mechanics were of metaphysical nature and could not be rigorously tested. This view

was challenged by a paper entitled “On the reality of the quantum state” by Pusey Barrett

and Rudolph (hereafter PBR), proving a no-go theorem which showed that realist ψ-epistemic

models are in conflict with quantum predictions [50].

However, in a follow-up work some of the same authors proved that their previous result

could be avoided and that it is always possible to construct ψ-epistemic models [79]. This

latter conclusion exploits the fact that the PBR theorem as well as all other no-go theorems for

ψ-epistemic models [51–53, 62] necessarily rely on assumption beyond the ontological models

framework, typically concerning the structure of the ontic state space. Hence, all current no-go

theorems actually rule out various subclasses of ψ-epistemic models that satisfy their specific

assumption. What was shown in Ref. [79] and also in Ref. [62] is that in the most general case,

without additional assumptions, it is impossible to completely rule out ψ-epistemic models.

4.3.1 The Pusey-Barrett-Rudolph Theorem

PBR showed, with a deceptively simple argument that ψ-epistemic models make predictions

that are in conflict with those of quantum mechanics. Although their result hinges on a few

critical assumptions and idealizations, it spurred a burst of interest in the study of ontological
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models for quantum mechanics. This section summarizes the PBR argument and the key points

of the underlying assumptions. For a detailed discussion of these assumptions, and how they

could be weakened the reader is referred to Ref. [4].

In a Nutshell

PBR consider two non-orthogonal quantum states ∣ψ1⟩, ∣ψ2⟩ and a two-outcome measurement

{m1,m2}, such that ⟨mi∣ψi⟩ = 0. Any viable ontological model must reproduce these zero

probabilities, which means that the response function for measurement outcome mi must vanish

for all ontic states corresponding to ψi, that is ξ(m1∣ supp(µψ2)) = ξ(m2∣ supp(µψ1)) = 0. Since

the response function ξ must be normalized for every ontic state, there can be no ontic state

in the support of both ψ1 and ψ2 and thus the epistemic states µψ1 and µψ2 must be disjoint.

This observation by itself is not particularly surprising, given that this kind of measurement

(this is essentially the unambiguous state discrimination problem) only exists for orthogonal

states, which by definition have to have disjoint epistemic states.

The important step is to now use two copies of the previous states, building the set {∣φ1⟩ =

∣ψ1⟩ ⊗ ∣ψ1⟩, ∣φ2⟩ = ∣ψ1⟩ ⊗ ∣ψ2⟩, ∣φ3⟩ = ∣ψ2⟩ ⊗ ∣ψ1⟩, ∣φ4⟩ = ∣ψ2⟩ ⊗ ∣ψ2⟩}. These product states are

formed under the preparation independence assumption. This assumption implies that the

epistemic states of a product quantum state should factorize into the epistemic states of the

individual systems, µψ1⊗ψ2(λ) = µψ1(λ1)µψ2(λ2). Now consider a four-outcome measurement

{m1,m2,m3,m4}, such that ⟨mi∣φi⟩ = 0. Using the same argument as before, if there is an ontic

state in the support of both ψ1 and ψ2, it must be in the support of all four φi, thus violating

the normalization of the response function ξ. In the case where ∣ψ1⟩ = ∣0⟩ and ∣ψ2⟩ = ∣+⟩, the

required measurement is simply a projection onto four orthogonal maximally entangled states,

which can be implemented experimentally.

The remaining step is to show that this result holds for arbitrary non-orthogonal states

ψ1/ψ2 = cos θ∣0⟩ ± sin θ∣1⟩. Since the proof only requires two different states it is sufficient

to consider qubits. In general the authors then consider composite system of n copies, each

prepared either in ψ1 or ψ2, subject to a 2n-outcome measurement Mn, such that each outcome

occurs with zero probability for at least one of the 2n possible joint states8. If the epistemic

states µψ1 and µψ2 overlap, there is a certain probability that the preparation of the joint

state yields an ontic states that is compatible with all 2n quantum states, which leads to the

same contradiction as before. Using this argument, epistemic overlap can be ruled out for

arbitrarily close ψ1 and ψ2, by chosing n arbitrarily large, and the authors construct an explicit

measurement circuit for all n.

Experimental Prospects

Experimentally the rapid increase in n (and especially the asymptotic limit) is rather pro-

hibitive. Limiting the the number of copies n is equivalent to restricting the result to pairs of

states with sufficiently small quantum overlap. A more serious problem is that experimental

8If such a measurement exists the states are called Post-Peierls(PP)-incompatible [80].
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noise means that the outcome probabilities never vanish exactly. Hence, one has to study the

case where the model only reproduces quantum predictions to within ε. Based on the prepara-

tion independence assumption PBR showed that ωc(µψ1 , µψ2) ≤ 2 n
√
ε holds in this case [50]. In

other words, in the presence of non-zero experimental uncertainty, it is not possible anymore

to completely rule out ψ-epistemic models for the tested states. Instead the experiment can

merely establish bounds on the absolute value of the classical overlap in ψ-epistemic models

that satisfy preparation independence. This argument has allowed to experimentally rule out

maximally ψ-epistemic models under the assumption of preparation independence [81].

A Closer Look

It has been suggested that PBR’s preparation independence assumption has a similarity to Bell’s

“measurement independence”-assumption [54]. It has subsequently undergone some scrutiny

and, as discussed in detail by Leifer [4] can be decomposed into two separate (well-known)

assumptions that are used at different places in the proof.

i) Cartesian product assumption or separability for product states : All properties of a product

state are fully determined by the properties of the individual systems. There are no

“holistic” ontic states [4, 82].

ii) No-correlation assumption or factorization for product states : product quantum states are

represented by product epistemic states [4, 82].

Separability. This notion goes back to Einstein and implies that spatially separate systems

should have independent ontic states (or “elements of reality”). In this sense the properties of

a composite system are fully determined by the properties of the individual constituents, just

as in the case of classical mechanics. This implies that the ontic state space for n particles

should have a Cartesian product structure Λ = Λ1 × . . . ×Λn. The epistemic states nonetheless

live in the corresponding tensor product space due to a simple closure argument9 [82].

Experimental tests of Bell-local and Leggett’s crypto-local models suggest that separability

is problematic for entangled states. Also in ψ-ontic models separability cannot hold in general,

since it would imply a Cartesian product structure of the quantum state space and not allow

for entangled states [82]. Hence, PBR only makes this assumption for product states, which is

physically motivated by the idea that states which can actually be prepared spacelike separated

from one another should not have any holistic properties. On the ontic level this means that

only the set of ontic states in the support of product state distributions is assumed to be a

subset of the Cartesian product of the corresponding ontic spaces. The PBR result could be

interpreted as a demonstration of the failure of separability for product states in ψ-epistemic

models.

9This would also make for a good motivation of ψ-epistemic models, since the tensor product structure of
quantum mechanics would arise naturally [82].
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Factorization. This is the assumption that composite quantum states should be represented

by product epistemic states, µ(λ) = µ1(λ1)µ2(λ2)⋯µn(λn). Although closely related, this

assumption is different from separability, which implies that λ = (λ1, . . . , λn). As with separa-

bility, PBR only assume factorization for product states, which is motivated by the idea that

two states which are prepared in an entirely uncorrelated fashion, such that no measurement

can reveal any correlations between them, then there should also be no correlation at the ontic

level [4]. In the case where separability for product states holds, this essentially reduces to

preparation noncontextuality for product states [82].

Weakening the Assumptions

The PBR theorem highlights a conflict between empirical observations and the assumptions

of ψ-epistemicity, separability for product states and factorization for product states. In the

face of an experimental violation at least one of these three assumptions must be given up or

relaxed. It is thus an interesting question to what extent the various assumptions could be

relaxed, while still leading to the same conflict. Two such efforts are briefly discussed below.

Compactness or compatibility is a notion introduced in Refs. [4, 83, 84]. It states that, if

there is an ontic state λ in the overlap of µψ1 and µψ2 , then there must be an ontic state λ′

which is in the support of the epistemic state for all 4 product states ∣ψ1⟩⊗∣ψ1⟩, ∣ψ1⟩⊗∣ψ2⟩, ∣ψ2⟩⊗

∣ψ1⟩, ∣ψ2⟩ ⊗ ∣ψ2⟩. While this is probably the weakest assumption required for the PBR proof to

work, it lacks much of the physical motivation of separability and factorization.

The weak preparation independence postulate or local independence as termed by Ref. [54]

separates the ontic states of the joint system into local and non-local ontic states, where the lat-

ter are inaccessible under local measurements. Separability for product states is then weakened

to Λ = Λ1 × Λ2 × ΛNL and factorization for product states is weakened to µψ1⊗ψ2(Λ12 × ΛNL) =

(µψ1 ×µψ2)(Λ12). Hence, under local measurements there is no difference between a model that

satisfies this assumption and one that satisfies preparation independence; the additional ontic

variable is only revealed under entangling measurements, which is the final step of the PBR

proof. In Ref. [54] a toy model is described that evades the PBR conclusion, but satisfies weak

preparation independence. It is, however, unclear whether this can be generalized to a model

for all of quantum theory [4, 54]. Other explicit ψ-epistemic models, which are derived from

Bell’s model [62, 79] all violate PIP and its weaker version.

4.3.2 Other Theorems, Other Assumptions

The PBR result was followed by a series of ψ-ontology theorems, using a variety of different

assumptions [51–53, 62]. The PBR theorem is concerned with multiple copies of a system,

whose preparations are assumed to be independent [50]. Others consider multiple systems

under the assumption of free choice and a notion of locality [51], or single systems, assuming

notions of continuity [52], invariance [53], or symmetry of the ontic state space [62].

Notably, the counterexamples of Ref. [79] are explicitly constructed for single systems and

would allow for superluminal influence from the measurement choices to the ontic states. These
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models therefore do not directly apply to the Bell-like scenario in Ref. [51], which is by assump-

tion free of superluminal influences [85, 86]. However, the latter assumes a notion of locality

and has thus been challenged in the light of Bell’s theorem.

Colbeck, Renner

The first of a series of papers by Colbeck and Renner was in fact published before PBR in

2011, and focused on a slightly different aspect of ontological models than the ψ-ontic/ψ-

epistemic discussion [87]. The authors argue that knowledge of the ontic state can, under

assumptions of free will and locality, never allow for more precise predictions than knowledge

of only the quantum state. As a by-product their work also includes a ψ-ontology theorem,

which was published separately in a simplified form [51]. The central assumption in this work

is a strong notion of “free choice”, which is meant to capture the idea that the experimenter

is free to choose measurement settings independently of everything, including ontic variables

and pre-existing information, that is not in its future light cone in any reference frame, such

that it is only correlated with events that could have been caused by it [51]. Fundamentally

this incorporates Bell’s measurement independence (i.e. measurement choices are independent

of the ontic variables), as well as notions of relativistic causality, temporal order and causal

arrow, see Sec. 5.3.1. Hence, it implicitly assumes parameter independence [4], stating that

the outcome of one freely chosen measurement should not depend on the choice for another

space-like separated measurement.

Under these assumptions they choose a bipartite Bell-like scenario that satisfies the condi-

tions that (i) measurement is chosen before the outcome is obtained (causal arrow), (ii) ontic

variables cannot influence the measurement choice (measurement-independence), (iii) measure-

ments on one side cannot influence the outcomes on the other side (parameter independence).

They show that this implies signal locality in the ontological model, and using chained Bell

inequalities they bound the amount of correlation between the ontic state and the local mea-

surement outcomes. In the limit of infinitely many measurements in the chain it follows that the

ontic state carries the same information about the local measurement outcomes as the quantum

state [51]. Assuming further that appending ancillas preserves ontological indistinctness, this

argument can be turned into a ψ-ontology theorem, see Ref. [4] for details.

In fact, the Colbeck-Renner result establishes that any ontological model which reproduces

quantum predictions and is consistent with their free choice assumption must be ψ-complete,

rather than just ψ-ontic, which is stronger than the PBR theorem. However, imposing lo-

cality assumptions on ontological models has received some criticism [4] and it is known that

Bohmian Mechanics, for example, is a ψ-ontic (but not ψ-complete) model that does not sat-

isfy parameter independence and is therefore not ruled out by this result. Furthermore locality

assumptions require a background causal structure, which in the light of recent developments

towards understanding the causal structure of quantum mechanics is rather undesirable, see

Chap. 5.
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Hardy

Hardy showed that there can be no ψ-epistemic model that satisfies (restricted) ontic indiffer-

ence [53]. This is a kind of symmetry assumption which implies that there exists at least one

pure quantum state ψ, for which any unitary that leaves it unchanged can be implemented in

a way that also leaves the underlying ontic states unchanged. Although ontic indifference has

been criticised as an assumption for a ψ-ontology theorem [4], Hardy’s theorem is relevant as

one of the few results that study dynamics in ontological models. In contrast to PBR, Hardy’s

theorem applies to a single system and, as pointed out in Ref. [4], makes precise the hand-

waving argument in favour of ψ-ontic models based on interference. Strictly speaking Hardy’s

result only holds for infinite-dimensional Hilbert spaces. In order to extend the result to finite

dimensions it is necessary to add an ancillary system of arbitrary dimension (which could be

“the rest of the universe”) under the assumption that this preserves ontic indistinctness. This

is motivated in a similar fashion as PBR’s separability for product states, see Ref. [53] and [4]

for a more detailed discussion.

Patra et al.

Patra et al. [52] derived a no-go theorem for ψ-epistemic models that satisfy a weak separability

assumption and a strong continuity assumption. The first requires that if a preparation of ψ

has non-zero probability for the ontic state λ, then a preparation of n independent copies of ψ

must have non-zero probability for the joint ontic state (λ, . . . , λ). The continuity assumption

is meant to translate the continuous quantum state-space to the ontic space in the sense that

a slight variation of ψ should only cause a slight change of µψ. The authors then classify the

possible ψ-epistemic models by two parameters: their continuity δ and their epistemicity [88]

ε. Here δ is the radius of a ball around the state ψ, such that there exists an ontic state in

µψ that is also in µφ for all states φ within this δ-ball. The quantity ε = ∑λ mink µψk(λ) is a

measure of the overlap of epistemic states for a choice of d quantum states ψk (where d is also

the Hilbert space dimension) in the δ-ball around ψ.

They then prove two no-go theorems. The first rules out δ-continuous models for δ ≥

1−
√

(d − 1)/d. The second makes use of the separability assumption, proving that there exists

no ψ-epistemic model that is both δ-continuous and satisfies the separability assumption. In

Ref. [88] a generalized, experimentally testable version of the theorem is presented, using a

redefinition of δ and ε to contend with imperfect detection efficiency. The predictions of this

theorem have been confirmed experimentally using time-bin encoding on an optical coherent

state [88]. Finally, the notion of δ-continuity has been criticised for being much too strong for

ψ-ontology theorems. The particular problems are nicely illustrated with a classical example

in Ref. [4].
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Aaronson et al.

Aaronson et al. [62] showed that there exists no ψ-epistemic model that is maximally non-

trivial and symmetric under unitary transformations. Maximally non-trivial, or pairwise ψ-

epistemic [4] models are such that the epistemic states for any pair of non-orthogonal quantum

states, independent of their inner product, have non-zero overlap. The second assumption,

symmetry under unitary transformations, fixes the ontic state space to either the space of pure

states or the space of unitary operators, and requires that the epistemic state is a function

fψ only of the overlap between ψ and λ (i.e. µψ(λ) = fψ(∣⟨ψ∣λ⟩∣)). As a consequence, µψ is

invariant under all unitary operations that keep ψ fixed. The motivation for this assumption

comes from a stronger notion of complete unitary invariance, which the authors call strong

symmetry, where the epistemic state is a fixed function of the overlap between ψ and λ for all

quantum states. In this case, applying a unitary U to a quantum state is equivalent to applying

it to the ontic states. Hence, in such theories one can simply use the Schrödinger equation to

describe time evolution on the ontic level. In contrast to Hardy’s ontic indifference, however,

these symmetry assumptions do not require that the ontic states remain fixed under unitary

transformations. While this no-go theorem is very aesthetic, the restriction of the ontic state

space, to be almost equivalent to the quantum state space, is very restrictive. It seems not too

surprising that in this case the quantum state would turn out to be ontic.

Curiously, the authors also show that without the symmetry assumption it is always possible

to construct pairwise ψ-epistemic models for any dimension. Loosely speaking, this entails first

constructing a ψ-epistemic model with overlapping epistemic states for an arbitrary pair of

pure states and then combining a dense set of these models via a form of convex combination.

This gives by construction pairwise ψ-epistemic model. However, the ontic state space is

CPd−1
× [0,1] × N, since the construction requires to keep one copy of each original ontic

space [62], thus violating symmetry under unitary transformations. Furthermore, the overlap

for any pair of states is very small: ωc(ψ,φ) ∼ (∣⟨ψ∣φ⟩∣/d)O(d).

4.4 Constraining ψ-epistemic models

The moral of the previous section is that ruling out ψ-epistemic models is not possible without

additional assumptions beyond the ontological models framework. The present section explores

an alternative approach without additional assumptions, but with more moderate demands.

Instead of completely ruling out ψ-epistemic models, one can aim to bound the extent to

which overlapping probability distribution can explain observations, in particular the imperfect

distinguishability of quantum states. In a pioneering work Barrett et al. [60] showed that no

ψ-epistemic model can fully explain this latter phenomenon. Specifically, there are sets of states

for which the ratio κ of classical-to-quantum overlaps must be smaller than one, for systems of

dimension d ≥ 3, and that this bound decreases linearly with the dimension. This result was

subsequently improved to an exponential scaling with dimension [61], and Ref. [58] showed that

an arbitrarily low bound on κ can be achieved for any dimension d ≥ 4. Whether the same is
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true for d = 3 is still an open question.

Common to all three works is that they do not rely on any auxiliary assumptions beyond

the ontological models framework. They all rule out the most compelling class of ψ-epistemic

models, those that fully explain quantum indistinguishability in terms of overlapping prob-

ability distributions. The rest of this section is devoted to a sketch of the derivation of an

experimentally testable inequality for maximally ψ-epistemic models, derived in Ref. [1, 58]

and the corresponding experimental protocol to test it.

4.4.1 How to Constrain ψ-Epistemic Models

Recall that in ψ-epistemic models the epistemic states µψ and µφ corresponding to two non-

orthogonal quantum states ∣ψ⟩ and ∣φ⟩ can overlap. This offers an intuitive qualitative expla-

nation for why these states cannot be perfectly distinguished, but it is unclear whether this

explanation reproduces the phenomenon quantitatively. A good figure of merit to assess how

much of the overlap a model can explain is the ratio κ(ψ,φ) of classical-to-quantum overlap.

Any value of κ < 1 (for any pair of states) implies that the overlap of the epistemic states is

insufficient to explain quantum indistinguishability and thus rules out maximally ψ-epistemic

models. The problem is that the epistemic overlap is defined at the level of ontic state and

cannot be measured directly. The fascinating result of Ref. [60] is that with a bit of mea-

sure theory it is nonetheless possible to use experimental data to impose upper bounds on the

amount of overlap that is possible in any ψ-epistemic model, see Ref. [58, 60] for details. The

experimental protocol is illustrated on the example of ququarts in the real subspace in Fig. 4.6,

using the following steps

(i) Pick a reference state ψ0 and a set of n ≥ 2 quantum states: {ψj}nj=1.

(ii) For each triplet of states {ψ0, ψj1 , ψj2} (with j1 < j2) which includes the reference pick a

measurementMj1j2 with 3 outcomes (m0,m1,m2) and measure the probabilities PMj1j2
(mi∣ψji)

for outcome mi on the state ψji (with j0 = 0) of the triplet.

(iii) From the experimental data estimate 1 + ∑
1≤j1<j2≤n

2

∑
i=0
PMj1j2

(mi∣ψji), which is an upper

bound on the classical overlap, see below.

(iv) Compute the sum of pairwise quantum overlaps ∑
1≤j≤n

ωq(∣ψ0⟩, ∣ψj⟩) for the used states.

Any maximally ψ-epistemic model must satisfy

S({ψj},{Mj1j2}) =

1 + ∑
1≤j1<j2≤n

2

∑
i=0
PMj1j2

(mi∣ψji)

∑
1≤j≤n

ωq(∣ψ0⟩, ∣ψj⟩)
≥ 1 . (4.8)

The quantity S({ψj},{Mj1j2}) is an upper bound on the minimal overlap ratio for the set of

states {∣ψj⟩}nj=1. This implies that within the sets of states measured, there is at least one pair
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of states with an overlap of at most S({ψj},{Mj1j2}). In particular, S < 1 is inconsistent with

maximally ψ-epistemic models.

Figure 4.6: The experimental protocol for ququarts. (a) Prepare n + 1 quantum states

for n ≥ 2, shown in blue. The states are shown in the subspace orthogonal to the reference

state ∣ψ0⟩ = ∣0⟩ = (1,0,0,0), spanned by the computational basis states ∣1⟩, ∣2⟩, ∣3⟩. The pairwise

quantum overlaps ωq(∣ψ0⟩, ∣ψj⟩) can be computed directly for the used states. (b) For each

triplet of states {ψ0, ψj1 , ψj2} (with j1 < j2), which includes the reference, pick a measurement

Mj1j2 with 3 outcomes (m0,m1,m2). The outcome probabilities for outcome mi on state ∣ψji⟩,

denoted PMj1j2
(mi∣ψji), can be measured experimentally. (c) The value S({ψj},{Mj1j2}) can

be computed from the experimental data and is an upper bound on minimal overlap present

in any ψ-epistemic model that reproduces the experimental statistics for the chosen states and

measurements.

4.4.2 Maths Exercise

Following Ref. [58] this section sketches how inequality (4.8) can be derived with just a bit

of elementary measure theory. Those readers for whom it is obvious, please skip ahead to

Sec. 4.4.3, those who want the full details are referred to Ref. [4, 58].

Since µψ ∶Λ → [0,1] is a positive, measurable function, it defines a region, the “area under

the curve”, denoted Cψ ⊂ Λ ×R+, see Fig. 4.7

Cψ ∶= {(λ,x)∶0 ≤ x ≤ µψ(λ)} .
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The symmetric overlap of multiple such regions Cψi is simply given by the intersection

⋂
i

Cψi = {(λ,x)∶0 ≤ x ≤ min
i

[µψi(λ)]} . (4.9)

The volume ν(C) of a region C can be determined by integrating over Λ×R+ using the measure

dν = dλ × dx. In the case of one set Cψ this recovers the normalization condition

ν(Cψ) = ∫
Cψ

dν = ∫
Λ

dλ∫
µψ(λ)

0
dx = ∫

Λ
µψ(λ)dλ = 1 .

In the case of multiple sets the volume generalizes the classical overlap defined in Eq. (4.5),

ν(Cψ ∩Cφ) = ∫
Λ

min[µψ(λ), µφ(λ)]dλ = ωc(µψ, µφ)

ν(⋂
i

Cψi) = ∫
Λ

min
i

[µψi(λ)]dλ .

Different (e.g. asymmetric) definitions are possible with different overlap measures, but the

present definition is widely used for its operational interpretation in terms of single-shot dis-

tinguishability.

Figure 4.7: Mapping of the probability measures µψ to sets Cψ. (a) The set Cψ liter-

ally represents the area under the curve of µψ. (b) The symmetric overlap is defined as the

intersection of the two sets Cψ and Cφ

For the triplets (ψ0, ψj1 , ψj2) it follows that

ν(Cψ0 ∩Cψj1 ∩Cψj2)

2

∑
i=0

ξMj1,j2
(mi∣λ)=1 ∀λ

↓
= ∫

Λ
(

2

∑
i=0

ξMj1,j2
(mi ∣ λ))min

i
[µψji(λ)]dλ

≤
2

∑
i=0
∫

Λ
ξMj1,j2

(mi ∣ λ)µψji(λ)dλ

=
2

∑
i=0

PMj1,j2
(mi ∣ ψji) . (4.10)

This establishes a connection between the overlap of the triplets (ψ0, ψj1 , ψj2) and the observed

measurement probabilities10 PMj1,j2
(mi ∣ ψji). The next step is to relate the left-hand side of

10At this point it is not yet assumed that the measurement probabilities agree with the Born rule. In the
following, however, it will be implicitly assumed that the considered models reproduce quantum statistics, i.e.
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inequality (4.10) to the classical overlap, which is defined for pairs of states. Denoting the

intersections with the reference set Cψ0 by Aj = Cψ0 ∩Cψj for j = 1, . . . , n as in Ref. [58] one can

use a standard counting argument, the so-called inclusion-exclusion principle to obtain

ν(
n

⋃
j=1

Aj) =
n

∑
k=1

(−1)k−1
∑

1≤j1<...<jk≤n
ν(Aj1 ∩ . . . ∩Ajk) (4.11)

≥
n

∑
j=1

ν(Aj) − ∑
1≤j1<j2≤n

ν(Aj1 ∩Aj2) . (4.12)

Truncating the sum in Eq. (4.11) yields alternating upper and lower bounds, known as Bonfer-

roni inequalities. Since, by definition, every Aj contains the set Cψ0 the union of all Aj cannot

be larger than Cψ0 , and the left-hand side of the inequality (4.12) is therefore upper-bounded

by 1. Some reshuffling implies:

n

∑
j=1

ν(Aj)
²

=ν(Cψ0∩Cψj )
=ωc(µψ0 ,µψj )

≤ ν(
n

⋃
j=2

Aj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤ν(Cψ0)=1

+ ∑
1≤j1<j2≤n

ν(Aj1 ∩Aj2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=ν(Cψ0∩Cψj1∩Cψj2 )

≤
2

∑
i=0

PMj1,j2
(mi∣ψji)

n

∑
j=1

ωc(µψ0 , µψj) ≤ 1 + ∑
1≤j1<j2≤n

2

∑
i=0

PMj1,j2
(mi ∣ ψji) .

Hence, the sum of pairwise classical overlaps ωc, between the reference state ψ0 and the states

states {ψj}nj=1, can be upper-bounded from experimental data. Crucially, this is a bound on the

sum of overlaps and does not directly constrain the overlap of any specific pair of states, other

than by the consistency condition Eq. (4.6), that the classical overlap can never exceed the

quantum overlap. This, however, implies that whenever the ratio between the sums of classical

overlaps and the sums of quantum overlaps is bounded below 1, there must be at least one pair

of states with an overlap ratio below 1.

1 +∑1≤j1<j2≤n∑
2
i=0PMj1,j2

(mi ∣ ψji)

∑
n
j=1 ωq(∣ψ0⟩, ∣ψj⟩)

≥
∑
n
j=1 ωc(µψ0 , µψj)

∑
n
j=1 ωq(∣ψ0⟩, ∣ψj⟩)

=
∑
n
j=1 κ(ψ0, ψj)ωq(∣ψ0⟩, ∣ψj⟩)

∑
n
j=1 ωq(∣ψ0⟩, ∣ψj⟩)

≥ min
j

[κ(ψ0, ψj)]
����������∑

n
j=1 ωq(∣ψ0⟩, ∣ψj⟩)

∑
n
j=1 ωq(∣ψ0⟩, ∣ψj⟩)

.

For maximally ψ-epistemic models it must hold that κ(ψ0, ψj) = 1 for all states ψj, which yields

inequality (4.8), where the left-hand side is an experimentally accessible figure of merit that

distinguishes maximally from non-maximally ψ-epistemic models. In the special case where all

quantum overlaps are equal, a similar argument can be used to obtain a bound on the average

overlap ratio

satisfy Eq. (4.2).
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1 +∑1≤j1<j2≤n∑
2
i=0PMj1,j2

(mi ∣ ψji)

∑
n
j=1 ωq(∣ψ0⟩, ∣ψj⟩)

≥
∑
n
j=1 κ(ψ0, ψj)ωq(∣ψ0⟩, ∣ψj⟩)

∑
n
j=1 ωq(∣ψ0⟩, ∣ψj⟩)

=
ωq(∣ψ0⟩, ∣ψ1⟩)∑

n
j=1 κ(ψ0, ψj)

nωq(∣ψ0⟩, ∣ψ1⟩)

=
1

n

n

∑
j=1

κ(ψ0, ψj) .

Under this condition there exist states and measurements [58] for which the average ratio scales

as
1

n

n

∑
j=1

κ(ψ0, ψj) < 8/n(d−3)/(d−2) . (4.13)

Hence, for systems of dimension d > 3 arbitrary low bounds can be imposed on the average

(and thus also minimal) classical-to-quantum overlap ratio, showing that the explanation of

quantum indistinguishability in terms of overlapping probability distributions is arbitrarily

bad. Whether this result holds for d = 3 as well is still an open question. Arbitrary low bounds,

of course, come at a price: they require arbitrary large sets of states, which, experimentally, is

rather unfortunate. Nevertheless, nontrivial bounds can already be established for any system

of dimension d ≥ 3, as soon as the number of states is n ≥ 3.

4.4.3 PP-Incompatibility

Although the approach of Ref. [58] builds on the ideas of Ref. [50, 60], there is a crucial

difference in the choice of states. Barrett et al. [60] (mostly for convenience) focus on so-called

PP-incompatible states, which are such that for each triplet (ψ0, ψj1 , ψj2) a measurement Mj1,j2

exists (in the subspace spanned by the states), such that PMj1j2
(mi ∣ ψJi) = 0 for 0 < i < 2

(with j0 = 0). Their argument is then similar to PBR, that, when quantum theory assigns a

probability of zero, so must the ontological model. In other words Cψ0 ∩Cψj1 ∩Cψj2 must be of

measure zero, which simplified the derivation. Such a configuration can be achieved by picking

states from mutually unbiased bases, but this fixes the number of states for given dimension.

The derivation of Ref. [58] is more flexible in that it does not make any such assumption. In

fact, the states constructed for the analytical bound also turn out to be PP-incompatible for

any n, but this bound might not be optimal and considering non-PP incompatible states might

yield better bounds.

4.4.4 Experimental Robustness

Inequality (4.8) allows, in principle, for an experimental test of ψ-epistemic models without

any auxiliary assumptions beyond the ontological models framework. For such a test to be

practical, however, it has to be sufficiently robust against experimental imperfections.

Recall that the number of triplets of states required for the test scales as n(n−1)
2 , and for

each triplet a 3-outcome has to be implemented to estimate the probabilities PMj1,j2
(mi ∣ ψji)
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with 0 < i < 2. Hence, the number of terms in the numerator of inequality (4.8) is 3n(n−1)
2 . To

estimate the error tolerance of the inequality one can add a uniform error ε to each term and

compute the largest value of ε such that the inequality is still violated [58]

ε <
1

3
2n(n − 1)

⎛

⎝

1 +∑1≤j1<j2≤n∑
2
i=0PMj1j2

(mi∣ψji)

∑1≤j≤n ωq(∣ψ0⟩, ∣ψj⟩)
− 1

⎞

⎠
. (4.14)

For the states used in Ref. [58] to obtain the analytical bound Eq. (4.13) the maximally per-

missible error per measurement scales roughly as ε ≲ 1/(12n(d−1)/(d−2)), which is on the order

of 10−3 per measurement. Increasing the number of states n thus not only requires a quadratic

increase in the number of measurements, but also leads to a less noise-robust experiment. This

implies a tradeoff between large n and sufficiently low noise to observe a strong violation. On

the positive side, the bounds are obtained for projective measurements, which can in general

be implemented with higher precision than arbitrary POVMs.

Since the states used in the experiment are obtained from numerical optimization they

are in general not PP-incompatible, which means that the probabilities in the numerator of

inequality (4.8) are not all expected to vanish. Instead, some vanish and others are just very

close to zero. In either case, however, measuring a bounded quantity (such as a probability) very

close to the boundary leads to a very sensitive experiment and asymmetric error distributions

that are skewed away from the boundary. In fact, no realistic experiment with finite data can

hope to reproduce a value on the boundary, such as an ideal probability of zero. Finally, the

denominator of inequality (4.8) depends on the prepared quantum states, which makes accurate

characterization of these states crucial for reliable estimates.

4.5 Testing Realist ψ-Epistemic Models

This section focuses on the “easiest experiment possible” [89]: a prepare-and-measure exper-

iment to test (maximally) ψ-epistemic models and impose experimental constraints on the

possible class of models using the ideas developed in the previous section. In particular, these

experiments test inequality (4.8) and use the parameter S to classify the models that remain

compatible with the experimental results. As discussed above, there are two important ingre-

dients to such an experimental test.

Firstly, a quantum system of dimension 3 (qutrit) or larger is required. Higher-dimensional

systems would lead to exponentially stronger bounds in inequality (4.8), but at the same time,

achieving the required precision in state preparation and measurement becomes increasingly

challenging. Practically this implies a tradeoff, which, with current technology, rather points

towards the low-dimensional end. A conceptually interesting aspect is the divisibility of quan-

tum systems. The ψ-ontology theorems of Ref. [50, 52], for example, use independence as-

sumptions and composite Hilbert spaces, while the derivations presented in Sec. 4.4, following

Ref. [58, 60, 61] are concerned with single quantum systems. Keeping with this spirit it is con-

ceptually desirable to study high-dimensional Hilbert spaces on individual systems, rather than
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constructing them by combining lower-dimensional spaces (e.g. using single photons rather than

pairs). Finally, any low-dimensional system can always be embedded in a higher-dimensional

Hilbert space, which means that a violation of inequality (4.8) for dimension d implies a vi-

olation for any larger d. For this reason it might be desirable to use the lowest-dimensional

system, a qutrit, which also happens to be naturally indivisible.

Secondly, a non-trivial bound requires the preparation of at least 4 (i.e. at least n = 3)

different quantum states [1, 58]. While increasing the number of states n allows, in theory, for

a larger violation of inequality (4.8), this comes at the cost of an increase in the number of

measurements that is quadratic in n, and with an overall decrease in the error-tolerance of the

experiment. Hence, a tradeoff between violation and experimental imperfections is expected

to occur, where at some point the accuracy of the experiment will be insufficient to achieve an

improvement by adding another state.

4.5.1 Choosing States and Measurements

The choice of states and measurements is critical for achieving strong bounds on the minimal

ratio of classical-to-quantum overlaps. For every dimension d ≥ 4, Branciard [58] showed that

there are families of n + 1 states, achieving arbitrarily low bounds as n → ∞. The states

used to obtain these analytic bounds, however are not necessarily optimal for an experimental

scenario. However, they can be further subject to numerical optimization to achieve a stronger

violation of inequality (4.8). In the present experiment this optimization was performed over

the real-valued subspace of the respective Hilbert-space. This reduces the achievable violation

for larger n, but allows for a simpler and more precise optical setup. The obtained solutions are

given in the supplementary information of Ref. [1], but although they achieve an improvement

over the analytical bound, they cannot be guaranteed to be optimal, since the optimization is

non-convex.

Instead of optimizing the states and measurements to achieve the largest violation of in-

equality (4.8), one might instead optimize for higher error tolerance, which tends to give slightly

different results, or for any other figure of merit, see Sec. 4.6.2. Figure 4.6a shows an example

set of states used in the experiment for d = 4, n = 7 projected onto the real-valued subspace

orthogonal to ∣ψ0⟩. The measurement M2,4 for this case is illustrated in Figure 4.6b, projected

onto the same subspace.

4.5.2 Experimental Setup

The requirements for a high-dimensional system on a single particle that can be controlled

to extreme precision and accuracy can be met using hyper-encoding in both the polarization

and path degrees of freedom on a single photon, see Fig. 4.8. With two separate spatial paths

this encoding naturally represents a ququart with computational basis states ∣0⟩ = ∣H⟩1, ∣1⟩ =

∣V ⟩1, ∣2⟩ = ∣H⟩2, ∣3⟩ = ∣V ⟩2, where ∣p⟩m denotes a state of polarisation p in path m. A qutrit can

be realised in this setup by simply leaving the state ∣3⟩ unpopulated.
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In contrast to fully path-encoded designs, which would enable encoding arbitrarily high

dimensions, the present approach does not require any nested interferometers. Hence, it can

deliver much greater stability and precision. Furthermore, reducing all state-preparation and

measurement to polarization rotations with a fixed two-path interferometer is what enables the

required precision and measurement accuracy (see Sec. 4.4.4), at least in 3 and 4 dimensions.

While this setup could in principle be extended to arbitrary dimension by adding additional

path degrees of freedom, this would require nested interferometers, which is detrimental for

accuracy.

a

b

HWP
BD

GT

Preparation Measurement

APD
SPDC

Figure 4.8: Experimental setup. (a) A single photon is prepared in the initial state ∣H⟩

by means of a Glan-Taylor polariser (GT). The subsequent half-wave plate HWP defines the

amplitudes of the path-encoded modes—i.e. the relationship between {∣0⟩, ∣1⟩} and {∣2⟩, ∣3⟩}. A

calcite beam displacer spatially separates these modes and another HWP in each arm sets the

amplitude in this spatial mode. (b) Arbitrary projective measurements onto ququart states

can be implemented using the reverse of the setup used for state preparation. An additional 45○

offset is introduced to the measurement HWPs to achieve equal path-length of the two arms in

the Jamin-Lebedev interferometer. Using only one output port of the final analysing polariser

ensures maximal fidelity of the measurement process.

Calibration of the Experiment

On paper the setup of Fig. 4.8 looks very promising, but whether it can reach the stringent ac-

curacy requirements depends on careful calibration and analysis of experimental imperfections.

Any single-photon experiment necessarily suffers from statistical noise due to the Poissonian

counting statistics. This affects all the experimentally estimated probabilities PM(m ∣ ψ) in

inequality (4.8) and can be taken into account using a Monte Carlo routine. Besides statis-

tical noise, there are also a few points where the experiment could be affected by systematic

imperfections, see Fig. 4.9.
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Figure 4.9: The main sources of systematic imperfections in the setup. (a) Counting

Statistics. The main source of statistical noise in the experiment is the single photon counting

statistics. Ideally, a random series of discrete events should be Poisson distributed, with equal

variance and mean count rate. In practice, however, added noise drives the source into a slightly

super-Poissonian regime with a larger variance of V ∼ 1.3µ. The counting statistics of the source

are the dominating factor for statistical noise. (b) Polarization Reference. Everything

has to be aligned to a single reference in the beginning to avoid systematic imperfections.

(c) Waveplates Inaccuracies in the calibration and imperfections in the waveplate affect the

accuracy of the experiment, while the precision is determined by the precision of the rotation

stage. Detailed plots are given in Fig. 4.10. (d) Interferometer. Phase fluctuations in the

Jamin-Lebedev polarisation-interferometer are critical for the precision of the optical setup.

The inset shows a trace of the interferometer visibility for 10s measurements over a period of

12 hours, and a histogram of the visibilities. Including some long-term drifts the interferometer

proved relatively stable with a median contrast of ∼ 400∶1.

Counting Statistics. The number of discrete events occurring within a fixed time-frame

follows a Poisson distribution. This is true if the events occur at a fixed average rate and

independently of the time since the last event. Under realistic experimental conditions these

requirements do not hold exactly, and, due to added noise, the variance of the single-photon

source turns out to be slightly larger than Poissonian, see Fig. 4.9a. For a measurement

time of 10s per point we observe a variance of V ∼ 1.3µ. This corresponds to the typical

measurement time in the experiment, and different noise timescales mean that the distribution

depends on the chosen measurement time. Besides these statistical errors the source also

exhibits systematic drifts due to fluctuations in the laser power. While the characteristic time-

scale for these is on the order of tens of minutes and thus longer than typical measurement

times, they can nonetheless affect longer measurement runs. This effect can be minimized by

arranging measurements in time such that those used for normalization of a set of probabilities
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are taken in close succession. Furthermore, laser drift can be monitored on the trigger port,

which is detected directly at the source. Another source of fluctuations is polarization drift

in the fibre from the source to the experiment, which only affects the overall experimental

count-rate due to the initial Glan-Taylor polarizer. In contrast to laser drift, this effect cannot

easily be corrected for, but it can be detected as a disproportional drop in count-rates between

experiment and trigger. In the present experiment this effect was negligible on the relevant

time-scales.

Reference. One of the more obvious sources of systematic error is imperfect calibration of

the polarization optics. Since every optical element in the experimental setup is birefringent

with some preferred axis, it is crucial to ensure all these axes are aligned with respect to a

common reference. In the present case this reference is provided by the Glan-Taylor polarizer,

which prepares a reference polarization state (here horizontal) with a nominal contrast of 105∶1.

All other components are then calibrated in-situ, one by one, to this reference. Although such a

method in general offers advantages over external calibration, it can suffer from accumulation of

errors. In the present experimental design, however, this can largely be avoided by calibrating

the elements as the setup is built, starting from the detector end.

Waveplates. The waveplates are the only “moving parts” in the experimental setup of

Fig. 4.8, and all the state-preparation and measurement is reduced to polarization rotation.

As a consequence, the waveplates are crucial for the accuracy of the experiment through im-

perfect calibration, steering, and manufacturing imperfections (i.e. imperfect retardance). Fur-

thermore, the repeatability of the motorized rotation stages on the order of ∼ 1/100○ limit

the precision of the experiment. Of the above, the dominating sources of imperfections are

systematic offsets in the calibrated zero position, and, most importantly, non-ideal retardance.

Recall that the latter can be determined from a calibration of the waveplate between aligned

polarizers. Since the retardance is very sensitive to the angle-of-incidence, it is crucial that this

step is performed in-situ. Table 4.1 summarizes the calibration results, with the waveplates

numbered in the order in which they appear in the setup, see Fig. 4.8.

Element δφ0 V
HWP1 0.04○ 0.999 ± 0.002
HWP2 0.05○ 1.000 ± 0.002
HWP3 0.06○ 1.000 ± 0.003
HWP4 0.06○ 0.997 ± 0.002
HWP5 0.06○ 1.000 ± 0.002
HWP6 0.04○ 0.999 ± 0.002

Table 4.1: Calibration data for the used half-waveplates. δφ0 is the standard error of

the fitted zero position of the waveplate, and V is the visibility (with standard error) obtained

from the fit.
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Figure 4.10: Typical in-situ characterisation curve for a semi-circular waveplate.

Measured calibration data is shown in blue with error bars indicating statistical uncertainties.

The fit-curve is shown in blue, with the 3σ confidence intervals in orange and 3σ prediction

intervals in green. The fit describes the data well within a region of about ±50○ around the

upright position. Outside this region the waveplate fails to cover the whole beam, which leads

to scattering. (a) In-situ calibration of a waveplate between aligned polarizers (b) In-situ

calibration between crossed polarizers.

Another important aspect is that waveplates are not perfectly flat, which results in a slight

deflection of the beam, that is further amplified by the distance of the waveplate from the

output of the setup. This causes a variation in the single-photon coupling at the output of

the setup, which translates into incorrect estimates of the experimental probabilities. This

effect could in principle be suppressed by using multi-mode fibres, which perform much wider

spatial filtering than single-mode fibres. However, this treats the symptom, not the cause, and

the loss of tight spatial filtering results in additional noise. Furthermore, steering within an

interferometer affects the overlap of the resulting beams and thus the quality of the interference.

It is therefore preferable to keep the spatial selectivity of the single-mode fibre to ensure proper

overlap of the interfering paths, and instead minimize steering through careful selection and

positioning of the waveplates.

The interferometer. Since measurements of path-encoded quantum systems require inter-

ference of multiple spatial modes (except for the special case of computational-basis measure-

ments), the quality of this interference (here the visibility of the Jamin-Lebedev interferometer)

is crucial for the precision of the experiment. The two main sources of imperfect interference

are a difference in path-length between the two arms, and imperfect beam overlap. The for-

mer is typically a result of drifts in the phase-alignment of the interferometer (here the yaw of

the second beam displacer), which causes a slowly varying phase error in the prepared states

that can be well approximated by a static unitary operation on the experimental timescale.

Imperfect beam overlap, on the other hand results in de-phasing of the produced states and

is caused by imperfect alignment, waveplate steering, length-unmatched beam displacers, or

optical imperfections. In the present setup the optical quality of the interferometer limits the

contrast to ∼ 400∶1.
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The treatment of interferometer errors is somewhat complicated by the fact that every in-

terferometer in a path-encoded scheme is part of (at least) two operations. In the present case

of a single interferometer, errors affect the combination of state preparation and measurement

and, in the absence of an intermediate evolution, can be attributed to either. The experi-

mental protocol, however, is robust against such phase errors. Coherent errors cannot change

the quantum overlap of a pair of states, while the choice ∣ψ0⟩ = ∣0⟩ ensures that incoherent

errors are not a problem either. On the measurement side, recall that the exact form of the

implemented POVM is irrelevant in the experiment. Hence, interferometer errors only affect

the numerical value of the probabilities PMj1j2
(mi ∣ ψi), thus weaken the achievable violation of

inequality (4.8).

Performance Estimation

The calibration data gathered above can be used to estimate the performance of the optical

setup to develop an idea for the expected values of S, and the uncertainties associated with the

remaining systematic errors. Recall that the error budget is very tight, and, since the measured

quantity is bounded and expected to be close to the boundary, most imperfections contribute in

an unfavourable way. In particular, this step can provide an estimation for the tradeoff between

number of states and accumulation of errors. This can be done using a Monte Carlo routine,

which samples simulated experimental values assuming normal distributed variations in the

calibration parameters. In each run the simulation picks a random value from the distribution

of calibrated waveplate uncertainties, Poissonian noise and interferometer visibility.

The denominator of inequality (4.8) is the sum of the quantum overlaps ∑
n
j=1 ωq(ψ0, ψj) and

thus only affected by state preparation. Moreover, each term in the sum is phase-independent

and thus only affected by amplitude errors, which are dominated by waveplate imperfections

and can be estimated from classical calibration data. Alternatively one might consider quantum

state tomography to reconstruct the experimentally generated state and calculate the overlaps

from these. This approach, however, conflates preparation and measurement errors and cannot

provide a clear estimate of the quality of the state preparation alone. Moreover, state tomogra-

phy always returns mixed states, which would require a generalization of the overlap measure

ωq to mixed states. Hence, for the present purpose only coherent errors are modelled.

The numerator of inequality (4.8) depends on both the preparation and measurement parts

of the setup. Classical calibration data for the waveplates (fit data with normal distributed

standard errors) and the interferometer phase (sampled from zero-centred normal distribution

with width matched to the average contrast) can be used to estimate the range of values.

Monte Carlo Approach. Under the approximation that numerator and denominator are

independent the Monte Carlo routine can be performed in two steps. First the distribution of the

denominator is estimated using wave-plate calibration data. This distribution is then used as

an independent variable, together with the observed uncertainty distribution for the numerator

to estimate the distribution of S. The resulting 1σ regions of expected values for S for ququarts
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are shown as shaded areas in in Fig. 4.11. In practice this assumption is a good approximation,

but not exactly satisfied. One could consider a more involved Monte Carlo routine, which

does not use any information about the experimental distribution of uncertainties and instead

samples the full parameter S from the classical calibration data. This would be computationally

intense and is not necessary for the present purpose, where the Monte Carlo routine should

only provide an estimate for the expected experimental performance.

4.5.3 Experimental Results

The theoretical predictions indicate that a violation of inequality (4.8) is possible for any

dimension d ≥ 3, using n + 1 ≥ 3 + 1 quantum states are used. In practice the predicted

violation for n = 3 is below the experimental precision and the first conclusive results are

obtained for n ≥ 4. The experimental data shown in Fig. 4.11 agrees well with the trend

predicted by quantum mechanics when taking into account the calibration of the experiment,

and conclusively rules out maximally ψ-epistemic models for any dimension d ≥ 3. Since it is

always possible to embed a low-dimensional quantum system into a higher-dimensional Hilbert

space, the results for dimension d translate to any higher-dimensional Hilbert space. The result

does, however, not hold in the case d = 2, where an explicit maximally ψ-epistemic model

exists [5].

These experimental results were achieved with an average error per measurement of ε ∼

0.0005+0.0012
−0.0004, see Fig. 4.12, which leads to the expected tradeoff seen in Fig. 4.11a between a

larger violation of inequality (4.8) and error accumulation due to a large number of measure-

ments, with saturation around n ∼ 12. Achieving further improvements beyond this number of

states would require higher experimental precision and interferometric stability.

Quantum State Tomography

An independent assessment of the quality of the experimental state preparation can be ob-

tained from quantum state tomography. In principle, the tomography results could be used

in the denominator of inequality (4.8). However, since the results of state tomography are

conflated with coherent and incoherent errors in the interferometer and in the measurement,

it significantly underestimates the quality of the state preparation alone. It can nonetheless

provide an interesting overall figure of merit for the experiment. We performed quantum state

tomography on all states used in the experiment, for all used values of n. For ququarts we

found a median fidelity of F = 0.998+0.002
−0.002 and median purity of P = 0.999+0.001

−0.003, where the error

bounds correspond to the first quantile of experimental values (i.e. ∼ 68% of values).

Experimental Errors

Since the states used in the experiment are obtained from numerical optimization they are in

general not PP-incompatible, which means that the probabilities PMj1j2
(mi ∣ ψi) in the numer-

ator of inequality (4.8) are not all expected to vanish. Instead, some vanish and others are just
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Figure 4.11: Experimental violation of inequality (4.8) for qutrits and ququarts. (a)

Values of S using real-valued ququart states, d=4, as a function of the number of states n. The

thick black line on top of the shaded bars represent theoretical values for the used states and

measurements for a given value of n, and the hatched region corresponds to S ≥ 1, which is

compatible with maximally ψ-epistemic models. Any value within the white area of the graph is

incompatible with maximally ψ-epistemic models. Each data point contains 1-sigma error bars

indicating statistical errors due to Poissonian counting statistics. The red-shaded areas indicate

the 1σ range of expected values from the above performance estimation of the optical setup, not

including systematic long-term drifts. To take the latter into account at least three data points

were measured for each value of n. The spread between these individual runs is in general larger

than the error bars and increases with the number of states n. (b) The comparison between

the d=3 (blue) and d=4 (red) cases highlights the advantage of higher-dimensional systems as

soon as n > d.

very close to zero. In either case, however, measuring a bounded quantity (such as a proba-

bility) very close to the boundary leads to a very sensitive experiment and asymmetric error

distributions that are skewed away from the boundary. In fact, no realistic experiment with

finite data can hope to reproduce a value that ideally lies on the boundary, such as a probability

of zero. Finally, the denominator of inequality (4.8) depends on the prepared quantum states,

which makes accurate characterization of these states crucial for reliable estimates.

4.5.4 Experimental Limitations and Extensions

The present dual-encoding approach combines the high precision of (two-dimensional) polariza-

tion encoding with the high-dimensional nature of path encoding without the need for compli-

cated and imprecise interferometry. In principle the Hilbert-space dimension accessible to this

scheme could be increased by factors of two. However, this would require adding an additional

interferometer in each arm of the current design, which significantly complicates the alignment

and would be detrimental for experimental precision. Other possibilities include a fully path-

encoded approach using integrated optics for increased interferometric stability, but also such

an approach grows in complexity very quickly as the Hilbert space dimension is increased. It
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Figure 4.12: Error tolerance of the experimental protocol for testing maximally ψ-

epistemic models. The maximal permissible error per measurement ε is shown for a qutrit

(orange) and ququart (blue) for 3 ≤ n ≤ 15. The error tolerance decreases with dimension and

with the number of states (i.e. with anything that allows for a larger violation). The shaded

gray area corresponds to the 1σ range of absolute errors per measurement achieved in the

experiment, with the solid gray line representing the median of the experimental distribution,

which is asymmetric, since the measured quantity is bounded.

might thus be preferable to pursue a naturally high-dimensional system, such as orbital angular

momentum of photons (which, however cannot currently reach the required precision), d-level

atomic systems, or spin-orbit coupled electrons.

A direct extension of the current approach would be to include quarter-waveplates to access

to the full ququart state-space, rather than just the real-valued subspace. This will allow

for stronger bounds on S, as soon as n ≥ 7, as shown in Fig. 4.13. Finally, improving the

experimental performance will allow to use a larger number of states before reaching the error-

accumulation tradeoff.

1.0

0.8

0.6

0.4
3 5 7 9

S

n 11 13 15

real

complex

Figure 4.13: Theoretical values for S using real, and complex-valued states and

measurements. For n ≥ 7, using complex valued states can give a significant advantage over

the real-valued subspace. These values are based on numerical optimization and cannot be

guaranteed to be optimal.
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4.5.5 Three-Outcome Measurement and Single-Output Decomposi-

tion

Irrespective of the dimension of the system, inequality (4.8) uses triplets of states and three-

outcome measurements. To construct such a measurement for d > 3, consider a d-dimensional

measurement, where all outcomes, except the first three, are chosen orthogonal to the subspace

spanned by the triplet of states under consideration. Quantum theory then assigns vanishing

probabilities to these outcomes, and a three-outcome POVM can be constructed by grouping

them with one of the first outcomes, e.g. m′
0 = m0 +∑

d
i=3mi. In practice, however, these prob-

abilities do not vanish exactly and this step might add some experimental noise. Moreover, it

is rather challenging to directly project on a large subspace, so instead, all outcomes are mea-

sured, and combined in post-processing. The method is nonetheless valid, since the derivation

of inequality (4.8) makes no assumption about the POVM.

In order to obtain reliable estimates of the outcome probabilities of a d-outcome measure-

ment it is crucial to ensure that there is no systematic bias among the outcomes. In a direct

implementation of the d-outcome measurement this would require balancing of losses, coupling-

and detection-efficiencies for all outcomes to within 10−3, which is extremely challenging. In

the present implementation the d measurement outcomes are instead measured sequentially in

close succession. Thus only one fibre-coupling assembly and detector is used, which eliminates

the main sources of systematic bias. However, since such a successive measurement design

requires different waveplate settings for each measurement outcome, it might be susceptible to

errors introduced by steering effects or other imperfections. In order to ensure that the im-

plemented operation is indeed a proper 3-outcome measurement (which need not be the ideal

measurement) one has to ensure that the normalised sum of the measurement operators for the

three outcomes is as close as possible to the identity operator. Using the calibration data for

the optical elements the average drop in measurement fidelity caused by these imperfections

can be bounded to 0.0007 ± 0.0002.

4.6 Discussion and Outlook

A violation of inequality (4.8) demonstrates that no ψ-epistemic model that reproduces the ex-

perimental observations can fully explain the limited distinguishability of non-orthogonal quan-

tum states in terms of overlapping probability distributions. In other words, it rules out

maximally ψ-epistemic interpretations of quantum mechanics. Crucially, observing a value

S({ψj},{Mj1j2}) < 1 does not mean that a ψ-epistemic model can at most explain this amount

of indistinguishability. Instead, it means that within the chosen set of states there is at least

pair of states with a ratio of classical-to-quantum overlap of at most S({ψj},{Mj1j2}).

For this reason the choice of states and measurements is crucial (and the name of the S-

parameter very clumsy). As a result, the S-parameter is also of limited use for classifying

ψ-epistemic models between the two extremes of maximally ψ-epistemic and ψ-ontic. Without
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any auxiliary assumptions it remains possible to consider models where different mechanisms

explain the indistinguishability of different sets of states. Since inequality (4.8) is symmetric

under unitary transformations the particular parameter of interest is the inner product (or

quantum overlap) of the used states. Although inequality (4.8) was derived for pure states, it

can straightforwardly be generalized to mixed states [4], which has been found, at least in some

cases, to allow for stronger bounds on the overlap ratio [90].

Comparison to PBR

It is worth spending a few moments to compare the present approach with the seminal PBR

result. In the noiseless case, PBR establishes an overlap ratio of 0 (i.e. the classical overlap

vanishes) for any pair of non-orthogonal quantum states with small enough inner product, using

two copies of the state. In order to extend this result to states with arbitrary quantum overlap,

they have to use n copies of the states, with n → ∞. Taking into account experimental noise,

the PBR argument is not able to completely rule out ψ-epistemic models anymore. Instead,

it only places bounds on the absolute value of the classical overlaps. Once the PBR result is

established for a family of states it follows that all states with smaller quantum overlap also have

vanishing classical overlap, but not for states with larger overlap. However, even in the noisy

case the experiment uses composite systems and has to rely on the preparation independence

assumption.

In contrast, the present result uses a single copy of each state and establishes an upper

bound on the minimal pairwise overlap ratio within a set of states. It does in general not give

information about the individual overlaps, and a bound of 0 can only be reached asymptotically,

as the number of states in the set gets arbitrarily large. An observed value of S < 1 implies

that there is at least one pair of states with a classical-to-quantum overlap-ratio of at most S,

while all other states could in principle have a ratio of 1. Without additional assumptions this

cannot be extended to arbitrary pairs of states.

4.6.1 Where to From Here?

With maximally ψ-epistemic models ruled out, we are left with a number of options, which all

come with their own problems.

Maintaining the notion of objective, observer-independent reality in the sense of the on-

tological model framework, one can either subscribe to non-maximally ψ-epistemic models or

adopt the ψ-ontic viewpoint. While the former are not completely ruled out, their main feature,

overlapping epistemic states, is insufficient to fully explain the observed indistinguishability and

must be supplemented with coarse-grained measurements. They are also constrained by the

existing experimental results and by no-go theorems which rule out many appealing sub-classes

of these models. The ψ-ontic view, on the other hand, faces the same old issues, such as the

measurement problem, where the projection postulate in a ψ-ontic interpretation implies an

instantaneous, probabilistic change in the system’s objective reality, which was criticized in

Ref. [55]. Moreover, realist interpretations must provide an explanation for how the ontology

134



can be contextual, while measurement probabilities only depend on the specific measurement

operator, or why the underlying reality seems to allow for superluminal effects, while all ob-

servations obey signal locality. A more detailed discussion of the consequences of a ψ-ontic

interpretation can be found in Ref. [4].

A popular alternative option is to give up the notion of observer-independent reality and

consider agent-centric interpretations, such as QBism [24, 25, 80]. Without objective reality,

they circumvent many of the explanatory issue that ψ-ontic interpretations have to face up to.

The collapse in the measurement problem is simply interpreted as a Bayesian update of the

agent’s probability assignment in light of new evidence. The consequences of Bell’s theorem,

on the other hand can be avoided by either giving up the idea that correlations need to be

explained [73], or by assuming a subjective agent-centric perspective that denies the existence

of correlations over spacelike separated regions. Nonetheless, such interpretations typically lose

the notion of “explaining” observations in favour of simply accommodating them.

Finally, if the existing ontological models are not appealing, or the idea of an interpretation

not providing any explanation for its predictions seems unsatisfactory, one could consider more

exotic ontologies, see e.g. Ref. [4]. One such option are retrocausal interpretations, which

are typically ψ-ontic, although consistent histories could be read as a ψ-epistemic retrocasual

interpretation. Another option is to consider ontologies with multiple realities, such as the ψ-

ontic many worlds, or relational interpretations. The latter, however, venture into the territory

of anti-realism, since they feature frame-dependent reality, which makes it difficult for observers

to agree on events.

Coarse Graining

In a ψ-ontic models the imperfect distinguishability of non-orthogonal quantum states is ex-

plained by a restriction that measurements can only reveal coarse-grained information about

the ontic states, reminiscent of the uncertainty principle, see Chap. 6. Indeed, in deterministic

ontological models the uncertainty principle requires the measurements to be coarse-grained,

independent of the status of the quantum state in these models [91]. Related to this it has been

argued that no ontological model, which satisfies a notion of free choice and locality, can allow

for more precise predictions than quantum mechanics [87].

Curiously, coarse-grained measurements seem to be a common feature—albeit not necessar-

ily involved in explaining indistinguishability—in most ontological models, including maximally

ψ-epistemic ones such as Spekkens’ toy model [5] or the Kochen-Specker model [64]. Spekkens’

toy model, for example, is based on the so-called knowledge-balance principle, which asserts

that only half the information needed to determine the ontic state can be known. To satisfy

this principle the model features overlapping probability distributions, coarse-grained measure-

ments, and measurement disturbance. Since the model is maximally ψ-epistemic, however, the

coarse-graining is not necessary to explain the indistinguishability of non-orthogonal states.

In non-maximally ψ-epistemic models, on the other hand, coarse-graining would have to

partially explain the imperfect distinguishability. Although it might seem excessive to have two
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mechanism to explain one phenomenon, the study of worked-out ontological models suggests

that it is not entirely implausible to expect both to play a role [5, 91]. This possibility is also

interesting in light of the observation that the overlap ratio only goes to zero as the states

become more distinguishable. Hence, all current theory and experimental results are indeed

compatible with models where coarse-graining explains most of the overlap for states that are

far from indistinguishable and epistemic overlap only gains importance as the states come closed

together. In order to rule out this possibility it is important to establish bounds for states with

large quantum overlaps.

Dynamics in Ontological Models

So far a lot of attention has been on prepare-and-measure experiments, which is a promising

direction that allows for very general results without additional assumptions. Going beyond

this simplest case, it will be interesting to study state update upon measurement, such as in

Spekkens’ toy model, or dynamics in ontological models. The latter is, for example, considered

explicitly in the works of Hardy [53], and Colbeck-Renner [51], and implicitly by Aaronson [62]

via restricting to an ontic state-space where dynamics at the ontic level are as in quantum

mechanics. In fact, Colbeck-Renner only require that adding ancillas preserves ontological

indistinctness, which is satisfied if the action of a unitary is described as a stochastic map.

Hardy goes a step further by imposing ontic indifference, which assumes that unitary dynamics

that keep the quantum state fixed correspond to dynamics that keep the ontic state fixed.

4.6.2 Limitations and Possible Extensions of the Method

An interesting observation is that in all current works on the topic, stronger bounds on overlap

ratios are only achieved for states with decreasing quantum overlap, see Fig. 4.14. In other

words, in cases where overlapping probability distributions can only explain a small fraction of

the overlap, there is also almost no overlap to be explained in the first place. The states used

in Ref. [58], for example, have an inner product that scales as ∣⟨ψ
(n)
0 ∣ψ

(n)
j ⟩∣2 = 1

4n
−1/(d−2). This

allows for an alternative interpretation of Branciard’s result as showing that there exist states

∣ψ⟩ and ∣φ⟩, such that

κ(ψ,φ) ≤
4d

8
∣⟨ψ

(n)
0 ∣ψ

(n)
j ⟩∣2(d−3) with ∣⟨ψ∣φ⟩∣ → 0

This behaviour is common for all current results and would indeed be expected from models

where coarse-graining and epistemic overlap both play a role in explaining quantum indistin-

guishability. Such models are compatible with current experimental results and could only

be ruled out by showing that overlapping probability distributions contribute very little to

explaining the indistinguishability, independent of the quantum overlap.
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Figure 4.14: Quantum overlaps of all states used in the experiment. The solid line is

the average quantum overlap as a function of n. Since the states are numerically optimized,

they are in general not symmetrically distributed, although in some cases, such as n = 12, the

optimization routine actually settles on a symmetric distribution with equal overlaps.

Overlap Measures and Figures of Merit

The overlap measures ωc and ωq used here have a clear operational interpretation in terms of

single-shot distinguishability with optimal measurements. However, this choice, which leads

to symmetric overlap regions, is not unique. Interestingly, using other measures can produce

qualitatively different results [4]. Using, for example, asymmetric overlap region associated with

unambiguous state discrimination [92], Spekkens’ toy model and the Kochen-Specker model

turn out to be non-maximally ψ-epistemic [91], while they are maximally ψ-epistemic with

respect to the present measure. This dependence implies that “epistemicity” can be defined

with respect to a variety of measures, which is an interesting area of further research.

Another point of discussion is the use of the overlap ratio κ as a figure of merit for studying

ψ-epistemic models. As a relative measure, κ quantifies the fraction of the indistinguishability

explained by a model, but fails to capture how much indistinguishability there is to be explained

in the first place. This can be somewhat deceiving, since S → 0 implies that ψ-epistemic models

can only explain an arbitrarily small fraction, but in all current work, this limit is only achieved

for states with an arbitrarily small amount of quantum overlap to be explained.

As an alternative it has been suggested to measure the absolute difference between the

quantum and classical overlaps, the overlap deficit [91].

δω(ψ0, ψj) = ωq(ψ0, ψj) − ωc(ψ0, ψj) . (4.15)

A bound on the maximal overlap deficit for the chosen set of states can directly be obtained

from that on the overlap ratio, as follows: for a given value of S, there exists a pair of states

(ψ0, ψj) such that κ(ψ0, ψj) ≤ S. For those two states,
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δω(ψ0, ψj) ≡ ωq(∣ψ0⟩, ∣ψj⟩) − ωc(µψ0 , µψj)

= ωq(∣ψ0⟩, ∣ψj⟩) (1 − κ(ψ0, ψj))

≥ min
j′

[ωq(∣ψ0⟩, ∣ψj′⟩)] (1 − S) ,

and hence

max
j

[δω(ψ0, ψj)] ≥ min
j

[ωq(∣ψ0⟩, ∣ψj⟩)](1 − S) . (4.16)

The states and measurements used in the experiment in Sec. 4.5 can thus also be used

directly to derive bounds on the overlap deficit. However, since these states and measurements

were optimized for S, they are not optimal for the overlap deficit as a figure of merit.

The main reason for considering the overlap deficit is that it has a more instructive limiting

behaviour, since δω → 1 is only achieved for quantum states that are completely overlapping,

while the epistemic states are completely disjoint. However, for experimentally accessible values

away from the asymptotic limits, both measures have similar shortcomings. A value of S = 0.7

implies that the model can explain 70% of the quantum overlap, but gives no indication if that

is a lot of overlap or not. On the other hand, a value of δω = 0.3 implies an absolute difference

of 0.3 between quantum and classical overlap, but does not indicate what this says about the

explanatory power of the model. The most informative would thus be a combination of either

quantity and a list of quantum overlaps for the prepared states, or a combination of both,

overlap deficit and overlap ratio.

Fair-sampling Assumption

Any photonic experiment suffers from optical losses and imperfect detection efficiency. To

address this most experiments rely on a fair-sampling assumption, which asserts that the set

of detected events (e.g. detected photons) is representative for the full ensemble. Notable ex-

ceptions are the loophole-free Bell-inequality tests of 2015 [93, 94], see Chap. 5. It is often

under-appreciated, that there are actually two aspects to this assumption. On the practical

side, fair-sampling must be justified by making sure that any kind of loss or inefficiency is

unbiased and affects every photon equally (e.g. there are no polarization-dependent effects).

Fundamentally, fair-sampling assumes that the tested ontological model is fair-sampled in the

sense that it is not the case that some ontic states are more likely to be detected than others,

thus giving a biased result. The latter cannot be justified experimentally, and experiments

therefore typically test the fair-sampled version of an ontological model. Similarly, the experi-

ment presented here relies on a fair-sampling assumption.

To estimate the required detection efficiency to avoid the fair-sampling requirement, one

can take into account non-detection events by assigning a fixed or random outcome to them.

Suppose for simplicity that the detection efficiencies for all three outcomes and for all states

and measurements are the same, η, and that the experimenter chooses to output m0 whenever

none of the detectors click. Hence, the probabilities for m0 are given by P
(η)
Mj1j2

(m0∣ψ0) =
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η P
(η=1)
Mj1j2

(m0∣ψ0) + (1−η) and for mi with i ≥ 1 by P
(η)
Mj1j2

(mi∣ψji) = η P
(η=1)
Mj1j2

(mi∣ψji). The value

of S as defined in Eq. (4.8) is then given by

S (η)({ψj},{Mj1j2}) =

1 + ∑
j1<j2

[(1−η) + η
2

∑
i=0
P

(η=1)
Mj1j2

(mi∣ψji)]

∑
j
ωq(∣ψ0⟩, ∣ψj⟩)

. (4.17)

Note that the same value would be obtained here if the no-detection events were replaced by

random outcomes. Ruling out maximally ψ-epistemic models requires S (η) < 1, and thus

η >
1 + n(n−1)

2 −∑j ωq(∣ψ0⟩, ∣ψj⟩)
n(n−1)

2 −∑j1<j2∑
2
i=0P

(η=1)
Mj1j2

(mi∣ψji)
. (4.18)

As a consequence of the tight error threshold for a violation of inequality (4.8) the efficiency

requirements for a test without the fair-sampling assumption are naturally much stricter than,

for example, in the case of Bell inequalities. Specifically, using the states and measurements of

the present experiment, the best scenario, d = 4, n = 5 requires an overall efficiency of at least

∼ 0.976. While this is currently out of reach for photonic implementations, other architectures

routinely achieve such efficiencies and would be more suitable for such an experiment.

4.6.3 Bell Inequalities and Device Independence

When it comes to tests of ontological models, the first thing that comes to mind is usually Bell’s

theorem. In contrast to the prepare-and-measure experiments discussed in this chapter, Bell’s

theorem is concerned with the correlations between two spatially separated quantum systems.

Under some additional assumptions one can derive Bell inequalities, which must be satisfied by

the correlations produced by any Bell-local ontological model, see Chap. 5 for details. Quantum

correlations, on the other hand violate this inequality. So far this is very similar to the present

case with inequality (4.8).

However, Bell inequality have the remarkable property of being device independent. This

means that they do not make any assumptions about the mechanism that generated the ob-

served correlations and could thus be tested using a pair of black boxes. This powerful feature

allows Bell-inequality violations to be used for certifying that two untrusted parties share entan-

glement, which is crucial for security purposes, see Chap. 3. From a foundational perspective

this means that Bell inequalities can be used to rule out local-causal models simply by finding

correlations that violate the inequality, without having to commit to quantum mechanics for

describing these correlations.

In the case of testing maximally ψ-epistemic models, however, the situation is different.

Instead of asking whether a model could have produced some experimental observations, the

experimental observations are used to constrain whether a model can quantitatively reproduce

quantum predictions. This approach is thus necessarily device dependent, in that quantum

mechanics is required to compute the reference to compare against. Here, this reference is the
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sum of quantum overlaps in the denominator of (4.8). Whether device-independent tests in

this generality are possible thus remains an open question. However, some models, which are

often counted towards the ψ-ontic camp are actually alternative theories and are known to

make predictions that deviate slightly from quantum mechanics. One example is gravitational

collapse models, which predict that quantum superpositions of objects above a certain mass

scale cannot be maintained for a significant amount of time. Such models make predictions

that are explicitly different from quantum mechanics and thus lend themselves more naturally

to device-independent tests [49].
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CHAPTER 5

Causality in a Quantum World
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5.1 Introduction

T
he previous chapter outlined the classification of various interpretations of quantum me-

chanics with respect to the status of the quantum wavefunction. The results discussed

there suggest that, if one wants to maintain realism, then the wavefunction cannot be treated

as a state of knowledge. However, this is not the only constraint on realist interpretations of

quantum mechanics. One of the earliest such results was formulated by John Bell in 1964 [2],

and again, but differently in 1976 [3]. In modern language Bell’s result implies that the corre-

lations between entangled quantum systems cannot be explained in terms of, possibly hidden,

cause and effect relations.

After four decades of experimental effort, Bell’s prediction has been confirmed in an un-

ambiguous way [4–6]. These experiments, however, cannot reveal where exactly quantum me-

chanics breaks with our classical notion of cause and effect. One way to reconcile the conflict is

by introducing nonlocal causal influences, which has coined the term “quantum nonlocality”,

but this is not the only possibility [7–9]. Consequently the question of how much the various

assumptions have to give way to recover a causal explanation has become an exciting area

of research [10–18]. The framework of causal modeling has proven an excellent platform for

the study of stronger-than-classical correlation [16, 19–25], and non-classical causality [26, 27].

This chapter focuses on using the theory of causal modeling to study relaxations of Bell’s as-

sumptions, in particular relaxations of the local causality assumption. This approach leads to

testable inequalities, which is used in Sec. 5.4 to rule out a class of causal models that aim to

explain quantum correlations by means of a nonlocal causal influence from one measurement

outcome to the other.
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5.2 The Causal Modeling Framework

“Correlation doesn’t imply causation, but it does waggle its eyebrows sug-

gestively and gesture furtively while mouthing ‘look over there’.” - R.

Munroe [28]

Cause-and-effect relations are ubiquitous for describing observed correlations in empirical

science. So ubiquitous in fact, that it was not until recently that causation was realized as an

implicit assumption and put on firm mathematical grounds in the form of the causal modeling

framework [29–31]. The notion of causality is in this framework based on the fundamental

idea that if a variable acts as the cause for another one, actively changing or intervening on

the first should result in a change in the second. This notion of intervention is the crucial

aspect that enables a distinction between correlation and causation. Causal modeling then

provides a powerful language to translate, in both directions, between intuitive networks of

cause-effect relations and abstract conditional probability distributions for a set of events. The

purpose of this is two-fold: a given structure of causal dependences and independences imposes

constraints on the allowed joint probabilities, and given a joint probability distribution it is

possible to discover the underlying causal structure.
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A D
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G

Causal Discovery

Causal Modeling

a b

Figure 5.1: The causal modeling framework. The causal modeling framework translates

between (a) joint probability distributions and (b) an intuitive structure of causal dependences

and independences.

5.2.1 A Causal Model

Formally, a causal model consists of a causal structure, represented by a directed acyclic graph,

see Fig. 5.1b, and a set of causal-statistical parameters. The nodes of the graph (circles in

Fig. 5.1b), correspond to distinct events such as measurements, and each event is associated with

a random variable that encodes the potential values, such as potential measurement outcomes

or potential values of a physical property. Two nodes can be connected by a directed edge

(arrows in Fig. 5.1b), which represents a causal influence from one node to the other. Note

that, although the flow of causal influences is often associated with the flow of physical time,

it is not necessary to make this association and there is no a priori notion of time in a causal
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model. Furthermore, the graph is “acyclic”, meaning that there are no closed paths or cycles

since otherwise events may cause themselves, which defies the idea of causal explanation. The

causal relations between causally connected nodes are described in intuitive family terms such

as ancestors and children, see Fig. 5.2a. Any causal graph can be described in terms of three

main building blocks: chain, collider and fork, see Fig. 5.2b.
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Figure 5.2: Basic notations of causal models. (a) Relationships between nodes of the graph

are denoted using family terms. Direct causes of a variable are called its parents and variables

are called children of their direct causes. The set of all generations of parents (children) of

a variable are called its ancestors (descendants). (b) Each causal graph is composed of a

combination of the three basic elements: forks, colliders and chains.

The causal parameters quantify the causal relations in the model by specifying the condi-

tional probabilities P (A∣Pa(A)) for every variable A given its graph-theoretic parents Pa(A).

In the case of so-called exogenous (as opposed to endogenous) variables—nodes without parent

nodes—this amounts to specifying the initial distribution.

The dependence between endogenous variables is in general probabilistic, but it can be

modelled as deterministic functions with added noise. In particular, explicitly adding an un-

correlated noise variable to every node turns any probabilistic model into a deterministic one.

Conversely, exogenous nodes that only affect a single child-node can be absorbed into the

child-node, turning the deterministic dependences of that node into probabilistic ones. In other

words, any randomness in a causal model can be traced back to ignorance over some variables.

A crucial assumption at this point, the so-called Markov assumption, is that all exogenous vari-

ables (including noise variables) are independently distributed. This ensures that the causal

model is complete in the sense that there are no un-modelled common causes.

The assumption that there exist of free variables, which are not caused by anything, is a

crucial ingredient of causal models, and the very notion of a “cause” is defined in terms of freely

chosen interventions. An intervention is an independent external influence that modifies the

causal mechanisms of a given model [32]. In the strongest case, it sets a variable X to one of

its values x, while leaving all other variables unperturbed. This operation, which is typically

denoted do(x), thereby overrides the mechanisms that would otherwise determine the value

of X. If there is a causal influence from X to Y , then intervening on X (i.e. changing X)
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should cause a change in Y . The maximal shift caused by the intervention can then be used to

quantify the strength of the causal influences

CA→B = sup
x,x′,y

∣P (y∣do(x)) − P (y∣do(x′))∣. (5.1)

Causal Markov Condition

A Markovian causal model (i.e. one that satisfies the Markov assumption of uncorrelated noise

variables) can be fully specified by the conditional probability distributions of all variables,

given their parents. Together with the law of total probability this definition implies that the

full joint probability distribution can be written in the product form:

P (X1, . . . ,Xn) =
n

∏
i

P (Xi∣Pa(Xi)), (5.2)

which is known as the causal Markov condition1. An equivalent formulation is that “For each

pair of distinct X and Y , where X does not cause Y , P (X ∣Y,Pa(X)) = P (X ∣Pa(X)).” [33].

In other words, every variable is independent of its non-descendants, given its parents (X ⊥⊥

Nd(X)∣Pa(X)). The parent nodes, which are typically associated with direct causes, thus

“screen off” the effect of indirect causes, which are ancestors further away in the graph.

In a Markovian causal model all correlations are accounted for by the causal influences in

the model. Hence, the Markov condition, could be read as implying that for every statistical

dependence there should be a causal dependence [34]. Non-Markovian models on the other

hand contain some correlations that are not explained by the causal structure, which can be

due to unmeasured common causes. Whether a model is Markovian or not can thus depend on

the level of grain, or the detail of the causal description. When the model cannot fully describe

the observed correlations, one can include latent or unobserved (maybe even unobservable)

variables into the causal structure until the extended model satisfies the Markov condition.

This is a dangerous path, since adding enough latent variables everything could be explained

in a superdeterministic way, which defies the purpose. However, it might be that there are

indeed unmeasured common causes, which could be modelled as latent variables, or as in the

case of hidden variable models of quantum mechanics, there might be fundamental restrictions

on which variables can and cannot be observed.

Reichenbach’s Common Cause Principle

A central motivation for the causal modeling program is Reichenbach’s common cause principle.

Essentially, it states that if two events are correlated, but neither is a direct cause of the other,

then there must be a common cause for both, which explains the correlation. More recently

Reichenbach’s principle has been decomposed into two separate assumptions [7, 22, 23]: the

existence of a common cause and the notion of “explaining” correlations.

1Strictly speaking, Eq. (5.2) is the Markov condition, and the causal interpretation requires the implicit
assumption that interventions on the various variables are possible.
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Principle of common cause If two variables are correlated and neither is a direct cause of

the other, then there must be a common cause for both.

Factorization of probabilities A common cause Z completely explains the correlations

between X and Y (assuming neither is a cause of the other), if and only if conditioning on Z

removes the correlations between X and Y . The common cause “screens-off” X and Y , such

that their joint distribution factorizes

P (X,Y ∣Z) = P (X ∣Z)P (Y ∣Z)

Reichenbach’s principle is a guiding idea of classical causal models, and both its parts are

inherent features of the definition of a Markovian causal model. In such a model all correlations

are accounted for by causal influences from parent-nodes to children-nodes, which implies the

principle of common cause. The Markov condition, which again follows from the definition of

a Markovian causal model, then implies factorization.

Faithfulness

A causal model is called a faithful representation of a probability distribution if all conditional

independences in the distribution are a consequence of the causal structure alone, and not due

to a specific choice of model parameters. Faithfulness is thus in some sense the converse to

the Markov condition and can be read as stating that every observed statistical independence

should imply a causal independence [34]. Together the Markov and faithfulness conditions thus

establish a one-to-one correspondence between causal and statistical (in-)dependences. However

they do not fully determine the causal structure and additional information (e.g. interventional

data) is required to establish the direction of causal influences.

Causal models that do not satisfy faithfulness are called fine-tuned, since they contain causal

influences which are hidden from the statistics by virtue of specifically chosen causal parameters.

This could occur, for example, if two variables are causally connected via two different paths,

which cancel each other exactly, see Ref. [34] for a detailed discussion. To illustrate the essential

features of fine-tuning, consider a simple quantum2 example of a source of particles S which

produces qubits in ±1-eigenstates of σy, and a binary measurement in σx or σz, with the setting

represented by X and the outcome by A. Due to the specific choice of values for the source,

the variables X and A appear statistically independent (A is completely random for any choice

of X). However, any disturbance of the quantum states produced by the source will break the

apparent independence of X and A.

Fine-tuned causal models are often considered unnatural, since the causal parameters are

chosen from a set of measure zero in parameter space. Hence, there is a vanishing probability for

a model to be fine-tuned, unless there is a natural mechanism that drives the model to this point

in parameter space. One prominent example is Bohmian mechanics, where equilibration leads

2Although one has to be careful when modeling quantum systems with classical causal models, properties
such as faithfulness still apply [32].

151



to fine-tuned parameters. The question of naturalness and fine-tuning is also relevant in other

fields, such as cosmology or particle physics. The mass of the Higgs boson, for example, appears

to be fine-tuned and physicists are aiming to find a natural mechanism that could explain this

value in a theory that eventually supersedes the standard model, such as supersymmetry [35].

Finally, although minimal variations of the fine-tuned parameters can completely change the

pattern of conditional independences in a causal model, there are intrinsic forms of fine-tuning

where such disturbances are not possible [34, 36].

5.2.2 Reading the Causal Graph

The pattern of causal influences in the causal graph is a representation of the conditional

independence relations that characterize the causal model. These relations are of the form

(X ⊥⊥ Y ∣Z) which reads X is independent of Y given Z, and means that knowing Z one

cannot gain information about X by learning Y . In terms of probability distributions this is

equivalent to the condition P (X,Y ∣Z) = P (X ∣Z)P (Y ∣Z) (“when Z is known then X and Y

are independent”) or P (X ∣Y,Z) = P (X ∣Z) (“the probability of X does not depend on Y if Z

is known”). In terms of conditional independence relations the Markov condition states that

(X ⊥⊥ nd(X)∣Pa(X)) ∀X; “every variable is independent of its non-descendants nd(X) given

its parents Pa(X)”.

Since the conditional independence relations satisfy the semi-graphoid axioms it is sufficient

to specify a generating set, from which all relations of the model can be calculated [23]. Letting

X,Y,Z denote sets of events, and X∪Y the union of such sets the semi-graphoid axioms are [23]

1. symmetry : (X ⊥⊥ Y ∣Z) ⇔ (Y ⊥⊥X ∣Z).

Intuitively, if, knowing Z, no knowledge about X can be gained from learning Y , then it

is also not possible to gain knowledge about Y from learning X.

2. decomposition: (X ⊥⊥ Y ∪W ∣Z) ⇒ (X ⊥⊥ Y ∣Z)&(X ⊥⊥W ∣Z).

Intuitively, if learning Y and W does not provide information about X, given Z, then

neither Y nor W independently provide information about X given Z.

3. weak union: (X ⊥⊥ Y ∪W ∣Z) ⇒ (X ⊥⊥ Y ∣W ∪Z).

Intuitively, if learning Y and W does not provide information about X given Z, then

knowing W does not change the fact that learning Y does not provide information about

X.

4. contraction: (X ⊥⊥ Y ∣Z)&(X ⊥⊥W ∣Z ∪ Y ) ⇒ (X ⊥⊥ Y ∪W ∣Z).

Intuitively, if Y is irrelevant to X given Z then conditioning on Y cannot change whether

W is relevant to X or not.

The d-separation criterion offers an intuitive graphical tool for extracting all conditional

independence relations that are implied by a causal graph (and only those). Two variables (or

disjoint sets of variables) X and Y are d-separated by the set of variables Z (i.e. conditionally
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independent given Z), if and only if removing Z renders every undirected path (i.e. ignoring

the direction of arrows) between X and Y inactive and does not create new active paths [23],

see Fig. 5.3.

Figure 5.3: The d-separation criterion. In order to establish whether X and Y are d-

separated by Z one needs to check the three primitives. In the case of a direct path which

contains a (a) chain or (b) fork with the middle element in Z, removing this element breaks

the path. (c) In the case of a collider (which is an inactive path to start with) the middle

element should not be in Z (indicated by ∉ Z) nor connected to an element in Z via a directed

path, otherwise removing it creates an active path, since conditioning on a common effect leaves

the causes correlated.

5.2.3 Causal Discovery

One of the main applications and central motivations of causal modeling is the idea of discov-

ering causal structure underlying some empirical data. In practice, this task is very difficult,

even in the classical domain, where a causal model always exists, since systems can be assigned

objective properties [37–40], see Ref. [16] for an accessible introduction.

Causal discovery algorithms traditionally try to find a causal structure that is compatible

with the set of conditional independences of a given empirical probability distribution. In

general this approach can only hope to return equivalence classes of candidate structures, since

e.g. a chain and fork are equivalent as far as the conditional independences are concerned.

Additional information, such as interventional data, or space-time relations between events can

help to distinguish between the different structures in a class. Another major challenge for

causal discovery algorithms is that the empirical data may not contain all relevant variables,

and unobserved common causes result in a non-Markovian model. To address such problems,

and make the task computationally tractable causal discovery algorithms rely on two central

principles [16]: faithfulness, and minimality. Since any correlation can be explained with enough

latent variables, these principles are used to restrict the number of latent variables and causal

links introduced by the algorithms. Minimality in particular is an appeal to Occam’s razor to

prefer the most specific model. If one model can simulate another but not vice versa, then the
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second is preferred.

Interestingly, the ambiguity in conditional independence relations together with the prin-

ciple of minimality can lead traditional algorithms into situation where they return a causal

structure that is compatible with the conditional independences, but not with the actual ob-

served probability distribution. Such a case is in fact the Bell scenario, which satisfies exactly

the same conditional independences as the EPR scenario. However, the case considered by Bell

(recall, they differ in the choice of measurement direction) features stronger correlations than

EPR, and cannot be explained causally. Furthermore conditional independences can never be

satisfied exactly with finite empirical data, even if they hold for the underlying mechanism.

Hence, it has been suggested that causal discovery algorithms should take into account the

full joint probability distribution, which contains more information than the conditional in-

dependences alone [16, 41]. In Ref. [16] it was pointed out that causal discovery algorithms

which satisfy minimality and faithfulness fail to produce a causal structure that can reproduce

Bell-correlations. All causal models that can explain the observed correlations must therefore

be fine-tuned.

5.3 Quantum Correlations: Bell’s Theorem and Beyond

In the scenario envisioned by Bell a source produces pairs of quantum systems, one of which

is sent to Alice, and the other to Bob. Alice (Bob) then has the choice between two measure-

ment settings, represented by the values of the random variable X (Y ) and obtains one of two

outcomes, represented by the variable A (B), see Fig. 5.4a. In addition to the measurement

settings, the outcomes also depend on the properties of the particles. These are in part de-

termined by known source parameters C and in part by unknown (or unknowable) “hidden”

variables Λ [7]. For simplicity both can be described by a single variable Λ, which might have

a complicated internal structure.

Figure 5.4: Bell-local causal models. Two parties, Alice and Bob, each perform one of

two local measurements on one half of a shared quantum state and obtain one of two possible

outcomes. Their measurement choices are represented by the variables X and Y , respectively

and the measurement outcomes by A and B, respectively. (a) The relevant variables in a

space-time diagram. The hidden variable Λ need not originate at the source of the particles.

(b) The bare minimum: five random variables (circles) and their causal dependencies (arrows).
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Abstracting the physics out of the situation, there are five relevant variables X,Y,A,B, and

Λ. Following classical intuition, the measurement outcome on each particle should only depend

on the properties of the local particle, and the chosen measurement setting. This is captured

by the causal structure in Fig. 5.4b, and by the conditional joint probability distributions

compatible with this structure, which are Bell’s local hidden variable models:

p(a, b∣x, y) = ∑
λ

p(a∣x,λ)p(b∣y, λ)p(λ) (5.3)

This set of conditional probability distributions forms a polytope. The facets of this polytope

represent constraints of positivity of probabilities and the 8 symmetries of the Clauser-Horne-

Shimony-Holt [42] (CHSH) Bell inequality under relabelling of the inputs, outputs and parties.

S2 = ⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2, (5.4)

where ⟨AxBy⟩ = ∑a,b=±1 ab p(a, b∣x, y) is the joint expectation value of Ax and By.

Fundamentally, Bell’s theorem and the models Eq. (5.3) are based on the factorization of

the conditional probability distribution P (A,B∣X,Y,Λ) into P (A∣X,Λ)P (B∣Y,Λ). An experi-

mental violation [5, 6] of a CHSH (or other Bell-type) inequality implies that at least one of the

assumptions underlying this factorization is at variance with quantum correlations. However,

there are a number of different sets of assumptions that lead to the above factorization, which

caused some confusion about the interpretation of the theorem and experimental violations of

Bell-inequalities.

5.3.1 Axiomatic Approach

Wiseman and Cavalcanti [7] proposed an axiomatic approach, which describes the various as-

sumptions underlying Bell’s theorem in terms of a set of fundamental axioms. This approach

clarifies some of the persisting misunderstandings and conflicting interpretations of Bell’s theo-

rem. It is furthermore very interesting as a guideline for future efforts in the study of the merits

and cost of various relaxations of these assumptions in candidate interpretations of quantum

correlations. They show that Bell’s theorem follows from four axioms (denoted A1-A4), which

are considered uncontroversial, and four postulates (denoted P1-P4), which are more likely to

be questioned. The four axioms are [7]

(A1) Macroreality

An event observed by any observer is a real single event and not relative to anything or

anyone.

(A2) Reasonable spacetime

Experiments take place in a well-behaved spacetime, which is time-orientable, such as

Minkowski space.

(A3) Temporal order of events
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There is a notion of past and future with respect to every event (not necessarily the one

of special relativity).

(A4) Causal arrow

Causes are in the past of their effects, excluding retrocausal interpretations of quantum

mechanics.

Macroreality is a notion of realism at the observational level, which ensures that different

observers give the same account of an experiment. This allows for some operational theories,

but excludes, for example, QBism or interpretations which do not feature an absolute reality,

such as relational interpretations. This notion is thus different from the notion of realism used in

Chap. 4, which assumes that there is an observer-independent objective reality, rather than just

operational predictions. Macroreality is a minimal assumption in both, the ontological models

framework and the framework of classical causal modeling. The other three axioms are rather

uncontroversial for earth-based experiments. However, interesting effects can occur in situations

where they might fail, such as in the presence of closed timelike curves, see Appendix B, or for

superpositions of massive objects, where no clear order of events exists [43]. The four postulates

are [7]

(P1) Free Choice

There are events in the model which have no relevant causes.

(P2) Relativistic causality

Past and future are defined via past and future light cone. Causes cannot propagate faster

than the speed of light

(P3) Common cause principle

If two variables are correlated but not direct causes of one another then there must be a

common cause for both.

(P4) Decorrelating Explanation

A variable acts as a common cause for the correlation between two variables (which are

not direct causes of one another), if conditioning on the variable removes the correlation.

Free choice is a crucial primitive in the causal modeling framework, used to define the concept

of cause and effect via (freely chosen) interventions. Notably, this definition does not make any

reference to the philosophically problematic concept of free will. Although giving up free choice

would make it difficult to maintain a notion of causality, it is possible to relax this notion, al-

lowing for superdeterministic models, where measurement settings, and measurement outcomes

are both determined by a common cause. While this might seem “about as plausible, and ap-

pealing, as, belief in ubiquitous alien mind-control.” [7], the study of models with restricted free

choice is nonetheless interesting from a conceptual and practical point of view [10, 12–14, 44].

In its abstract form, the causal modeling framework relies only on A1, P1, and Reichenbach’s

principle (P3 and P4). Axioms A2 and A3 are, strictly speaking, not necessary since causal
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models do not require a background spacetime and do not have an a priori notion of time.

In the physical interpretation of the framework, however, physical time is typically associated

with the direction of causation and axioms A2-A4 then provide a physical justification for the

acyclicity of causal graphs (i.e. no causal loops).

Curiously, this approach highlights that Bell’s theorem follows from the causal modeling

framework, (P1, P3, and P4), together with relativistic causality (P2). Hence, in light of

experimental violations of Bell inequalities one either has to give up relativistic causality, or

the classical way of thinking about cause and effect. Ref. [7] suggests that advocates of realism

like Bell himself tend to give up relativistic causality, in order to maintain a notion of explaining

correlations. On the other hand, it is argued that advocates of an operational interpretation

of quantum mechanics are not particularly attached to the factorization part of Reichenbach’s

principle

5.3.2 Bell’s Assumptions

Bell’s theorem and the factorization of Eq. (5.3) can be obtained from a number of different

sets of assumptions about the specific causal structure. All of these in turn follow from subsets

of the fundamental axioms and postulates discussed in Ref. [7]. In this section the most com-

monly used “higher-level” assumptions for deriving Bell’s theorem are introduced and discussed.

These are typically formulated directly in terms of constraints on the conditional probability

distribution and do not necessarily have a causal interpretation. Section 5.3.3 then presents

a novel decomposition of the central assumption of local causality into causally meaningful

sub-assumptions, and Sec. 5.3.5 discusses how all of these assumptions come together to imply

Bell’s theorem.

Measurement Independence requires that the measurement settingsX,Y are uncorrelated

with the hidden variable Λ. In terms of conditional probability distributions this implies that

P (x, y∣λ) = P (x, y) or equivalently P (λ∣x, y) = P (λ). This condition is often referred to as

the “free choice assumption”, and motivated on the grounds of apparent experimental free

will, which, however, is a problematic association [45]. It is important to distinguish between

the fundamental axiom of free choice, which states that there exist variables without relevant

causes, and measurement independence, which states that the measurement settings are such

variables. Assuming that measurement settings are freely chosen variables further implies

marginal independence of Alice’s and Bob’s settings. In practice, measurement independence

is justified by spacelike separation of the measurement settings from the source, and appealing

to relativistic causality, see Sec. 5.5.1.

Predetermination is the assumption that the measurement-outcome probabilities are de-

terministic functions of the measurement settings and the hidden variable:

P (a, b∣x, y, λ) ∈ {0,1} ∀x, y, λ (5.5)
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Importantly, this does not imply that the measurement outcomes are predictable, since they are

obtained from averaging over the unknown hidden variable. Bell used this assumption together

with parameter independence in his 1964 derivation, see Ref. [7] for details. Predetermination

also implies the strictly weaker condition outcome independence, which Bell subsequently used

in the 1976 version of his theorem. Although these assumptions are related, only the latter can

be derived from the causal assumptions directly [7]. Nevertheless, the two versions of Bell’s

theorem can be shown to be equivalent [46].

Predictability is the operational pendant to predetermination:

P (a, b∣x, y, c) ∈ {0,1} ∀x, y, c (5.6)

Predictability implies that the measurement outcomes are fully determined by the measurement

settings X,Y and the source parameters C. This property holds, in principle, for any classical

system, where sufficient knowledge of the starting configuration (which might be exceedingly

complicated) allows one to calculate future configurations. It was shown that Bell’s theorem

together with signal locality implies that some quantum phenomena are fundamentally unpre-

dictable [8, 47]. This is particularly interesting in a cryptographic context, as these phenomena

can be used to generate perfect randomness.

Signal locality or no-signalling captures the idea that signals cannot travel faster than the

speed of light, and follows directly from special relativity (or relativistic causality in the language

above). In the Bell scenario it implies that the local measurement outcome should not carry

information about the remote (space-like separated) measurement setting. This is captured by

the statistical independence relations

P (a∣x, y) = P (a∣x) and P (b∣x, y) = P (b∣y), (5.7)

or in the language of causal models by the conditional independences (A ⊥⊥ Y ∣X) and (B ⊥⊥

X ∣Y ). Since signal locality is an empirically observed, operational concept that involves only

observable probability distributions it can be treated as an observed independence, rather than

an assumption.

Local causality is the assumption used in Bell’s 1976 paper [3] and captures the idea that

there should be no causal influence from one side of the experiment to the spacelike separated

other side. Formally, it is given by the constraints

P (a∣b, x, y, λ) = P (a∣x,λ) and P (b∣a, x, y, λ) = P (b∣y, λ). (5.8)

Local causality is much stronger than the operational principle of signal locality and directly as-

sumes the factorization of the joint conditional probability distribution. In terms of conditional

independence relations it reads (A ⊥⊥ BY ∣X,Λ) and (B ⊥⊥ AX ∣Y,Λ). Local causality follows
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from the joint assumption of parameter independence (or locality) and outcome independence.

Parameter independence generalizes the statistical constraints of signal locality to include

the hidden variable. It is defined as the joint assumption of the two statistical constraints:

P (a∣x, y, λ) = P (a∣x,λ) and P (b∣x, y, λ) = P (b∣y, λ). (5.9)

This is the locality assumption that Bell used together with predetermination in his 1964 deriva-

tion of the theorem [2, 7]. The two statistical constraints in Eq. (5.9) individually correspond

to the conditional independences (A ⊥⊥ Y ∣X,Λ) and (B ⊥⊥ X ∣Y,Λ), respectively. The first con-

straint corresponds to a causal model as in Fig. 5.4b with additional links X → B and A→ B,

but no link Y → A, see Fig. 5.5, and similarly for the second constraint. Importantly, parameter

independence, which is the joint assumption of both statistical constraints, does not correspond

to a causal model3. As a consequence, parameter independence does not imply causal inde-

pendence (in the sense of causal modeling) of either outcome from the remote setting as was

first noted in Ref. [48], see Fig. 5.5. A failure of parameter independence (as is the case in

collapse models and Bohmian Mechanics) also does not necessarily imply signaling [8], since

the dependence of an outcome on the remote setting can disappear when averaging over the

hidden variable.

Outcome independence is one way to supplement parameter independence to reach local

causality, and is given by the statistical constraints

P (a∣b, x, y, λ) = P (a∣x, y, λ) and P (b∣a, x, y, λ) = P (b∣x, y, λ). (5.10)

This condition can be interpreted as precluding any direct causal influence from Alice’s mea-

surement outcome to Bob’s or vice versa. In other words, the measurement outcomes are

independent, given knowledge of everything else: (A ⊥⊥ B∣X,Y,Λ). This assumption is also

known as statistical completeness, owing to the observation that if Bob’s outcome is statisti-

cally independent of Alice’s outcome, all correlations must be due to ignorance of Λ [45].

5.3.3 Causal Assumptions

Outcome independence and parameter independence together imply local causality, which has a

clear interpretation as forbidding any causal link from either side of the experiment to the other.

The individual sub-assumptions, however, do not have a causal interpretation. In the spirit of

causal modeling we introduce a novel decomposition of local causality into causal parameter

independence and causal outcome independence, which have a clear causal interpretation as

excluding various causal links. Since there cannot be a bidirectional causal link between A and

3The sets of probability distributions compatible with both models is in the intersection of the sets that
are compatible with either model. In the case of parameter independence these models are mutually exclusive,
because one contains a link A→ B and the other a link B → A.
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B, each of these assumptions correspond to two sets of statistical constraints, one for models

with a potential link A → B and one for models with a link B → A. Formulated in this way,

the assumptions apply to any linear combination of the models (i.e. any convex combination of

conditional probability distributions) with either causal link.

Causal parameter independence captures the idea that there should be no causal link

from the measurement settings to the remote measurement outcomes. For models with a link

A→ B, the corresponding statistical constraints are

P (a∣x, y, λ) = P (a∣x,λ) and P (b∣a, x, y, λ) = P (b∣a, y, λ) , (5.11)

The respective conditions for the model with the link B → A are obtained by swapping a

with b, and x with y in Eq. (5.11). In contrast to ordinary parameter independence either

constraint ensures that there is no direct causal link from either measurement setting to the

remote outcome.

Causal outcome independence excludes the causal link from Alice’s measurement outcome

A to Bob’s measurement outcome B. In terms of probability distributions, this corresponds to

P (b∣a, x, y, λ) = P (b∣x, y, λ) . (5.12)

Again, this condition is for the causal graph with a link A→ B and the condition for the graph

with this reversed causal link can be obtained by swapping a with b in Eq. (5.12). In this case,

the statistical constraints starting from either model turn out to be equivalent and imply the

factorization P (a, b, x, y, λ) = P (a∣x, y, λ)P (b∣x, y, λ). blabla

5.3.4 No Fine-Tuning

As discussed above, one of the common assumptions (but not a central principle) of the causal

modeling framework is causal faithfulness or no fine-tuning. This implies that all observed

conditional independences should be a consequence of the causal structure, and not just of a

particular, fine-tuned, choice of model parameters. In the Bell-scenario there are two (approx-

imate) empirical conditional independence relations

(X ⊥⊥ Y ) (marginal independence of settings)

(A ⊥⊥ Y ∣X), (B ⊥⊥X ∣ Y ) (signal locality). (5.13)

Using a causal discovery approach one can now find all causal structures that respect these

observed conditional independence relations. Under the mild assumption that measurement

settings X,Y precede the measurement outcomes A,B it was shown in Ref. [16] that the only

causal structure for the variables A,B,X,Y (with or without hidden variables), which faith-

fully represents Eq. (5.13) is that of Bell’s local causal models in Fig. 5.4b. This implies that
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Figure 5.5: Comparision of various constraints on the causal structure of Bell’s the-

orem. The causal links forbidden by the respective assumption are shown in dashed green. In

the case of parameter independence only the causal model for the first constraint is shown; the

joint assumption of both does not correspond to a causal model. The statistical constraints

corresponding to causal outcome independence and causal parameter independence are asym-

metric in a and b, and swapping them would result in a causal structure where the arrow

between A and B is reversed.

even without appealing to physical notions such as local causality or measurement indepen-

dence, Bell-local causal models are obtained as the only faithful representation of the observed

conditional independences.

All other causal models (i.e. all explanations of Bell correlations that are in accordance with

Reichenbach’s principle and free choice) must then be fine-tuned. This fine-tuning can take

various forms, see Ref. [16] for a physical, and Ref. [34] for a philosophical discussion. One such

mechanism is based on canceling paths, where two variables are causally connected via multiple
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paths that balance each other exactly such that the variables appear uncorrelated. This form of

fine-tuning appears, for example in models which abandon local causality (cf. Fig. 5.7c), where

it ensures that signal locality is satisfied. Another possibility is marking, where a causal link is

hidden by another causal influence from an independent variable. In Fig. 5.7b, for example, the

direct causal link from A to B can be masked by the link from Λ to B via a specific structure

of the hidden variable [16].

Fine-tuned explanations are sometimes considered unnatural, since they are very sensitive

to disturbances of the causal parameters. However, fine-tuned causal parameters can arise quite

naturally through processes such as equilibration [16, 49]. Bohmian mechanics is a prominent

example, where signal locality and the Born rule are fine-tuned features of the equilibrium

state. Furthermore, Ref. [34] proposed a fine-tuning mechanism that is similar to cancelling

paths, but acts on the level of values, rather than variables, which is interesting for spontaneous

collapse interpretations and retro-causal models [36]. This internal cancelling paths mechanism

effectively introduces a probabilistic dependence between three variables in a chain, such that

there are multiple paths to arrive at each value of the final variable, resulting in statistical

independence of the first and last variable. If the probabilities are chosen right (according

to the born rule) then this reproduces quantum predictions. They argue that disturbances

(specifically, unitary operations) might disturb the causal structure at the variable level, but

not at the value level. Thus this kind of fine-tuning would not be detectable.

5.3.5 Many Roads to Bell’s Theorem

Figure 5.6 brings some order to all the causal assumptions introduced in the preceding section,

by depicting how they can be combined to derive Bell’s theorem.

The derivation of Bell’s theorem from signal locality and predictability follows that correla-

tions which violate a Bell inequality, while satisfying signal locality must contain fundamentally

unpredictable events [8]. Bell’s 1964 theorem is based on the assumption of parameter inde-

pendence (or locality) together with predetermination. In contrast to before, neither of these

assumptions are operational. Hence they cannot be tested independently, and a Bell-inequality

violation does not contain any information about their independent validity [8]. Bell’s 1976

theorem is based on local causality, which can be decomposed into either the statistical con-

straints of parameter independence and outcome independence, or into the causal constraints

of causal parameter independence and causal outcome independence. Either combination leads

to Bell’s theorem, but only the latter has a causal interpretation. Finally, the structure of Bell’s

local causal models can be obtained as the only causal structure that can faithfully reproduce

the observed conditional independences [16].

5.3.6 Relaxing the Assumptions

“Bell’s theorem, in all its forms, tells us not what quantum mechanics is,

but what quantum mechanics is not” - Zukowski, Brukner (2014) [9]
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Figure 5.6: Many roads to Bell’s theorem. Deriving Bell’s theorem from empirically verified

signal-locality (SL) and the strong assumption of predictability (P) implies that some quantum

phenomena are fundamentally unpredictable [8, 47]. Bell’s 1964 derivation of his theorem is

based on locality (L) and predetermination (PD) [2], while the 1976 version is based on local

causality (LC) [3], which can be seen as the conjunction of parameter independence (PI) (an-

other name for locality) and outcome independence (OI). Alternatively, local causality can be

obtained from causal parameter independence (cPI) and causal outcome independence (cOI) [1].

All these derivations also assume measurement independence (MI). Ref. [16] shows that Bell’s

local causal models also follow from Reichenbach’s principle (RB), that is prepositions 3 and 4,

as the only causal model that can satisfy signal locality and marginal independence of set-

tings without violating the no fine-tuning assumption (noFT). Symbols <,>,= indicate that the

assumption to the right is stronger, weaker or equal to the assumption to the left of the symbol.

A violation of a CHSH inequality reveals a conflict between experimental observations and

the predictions of Bell-local causal models. Although this is often attributed to some kind of

nonlocal causal influence, which coined the term “quantum nonlocality”, a failure of any of the

assumptions might allow for a causal explanation of the observed correlations. Consequently,

there is a significant body of literature examining to what degree the various assumptions have

to be relaxed in order to recover a causal model for quantum correlations [10–17, 45]. The

causal modeling framework offers a unique platform for a unified treatment and an intuitive

interpretation of these relaxations [15, 16]. A large number of proposed causal models can be

classified by studying the corresponding causal structure with respect to Bell’s original local

causal structure.

Local Causality

Local causality can be relaxed by either relaxing causal outcome independence (Fig. 5.7a),

causal parameter independence (Fig. 5.7b), or both (Fig. 5.7c). Since Alice and Bob are as-

sumed to be spacelike separated from each other, models that violate local causality involve

superluminal causal influences4. Such models can nonetheless be in accordance with signal lo-

4Relativity merely implies that there can be no superluminal information transfer (i.e. signal locality), but
not that causal influences cannot travel faster than the speed of light. For example, both phase- an group-
velocity of a wavepacket can be superluminal, but the signal velocity (identified with the velocity of an edge) is
always bounded by the speed of light in vacuum [50]. In other words, causal influences can conceivably travel

163



cality by virtue of fine-tuned causal parameters. A violation of causal parameter independence

implies that one or both measurement settings causally influence the measurement outcome on

the respective other side of the experiment. For a violation of causal outcome independence

the most general case is a convex combination of models that contain either the link A→ B or

B → A. A model with a simultaneous link from A to B and B to A cannot be given a causal

interpretation, since it involves a causal loop, such that A could cause itself.

A B

X Y

A B

X Y

A B

X Y

ba c

Figure 5.7: Relaxations of local causality. Local causality can be violated by (a) a violation

of causal parameter independence, (b) a violation of causal outcome independence, or (c) a

violation of both.

Models featuring nonlocal causal influences are among the most popular causal explanations

of quantum correlations. An early example of how a violation of causal parameter independence

can be exploited to simulate singlet-state correlations was introduced by Toner and Bacon in

2003 [51]. In their protocol Alice and Bob share two random Bloch-vectors for each run of

the experiment (the hidden variable). Alice uses these two vectors to partition the Bloch-

sphere into two regions and sends the location of her measurement choice with respect to these

regions (one bit of information) to Bob. Bob similarly partitions the Bloch-sphere into two

different regions and computes his output based on the relative orientation of his and Alice’s

measurement, see Ref. [51] for details. Curiously, the hidden variable in this model must

contain an infinite amount of information, which is a necessary feature of ontological models of

quantum mechanics, known as the ontological excess baggage theorem, see Chap. 4 for details.

They demonstrate that a 1-bit message is sufficient to simulate all singlet state correlations,

which under appropriate circumstances can be compressed to ∼0.85 bits. More generally, the

minimum entropy of a binary message in this scenario is directly proportional to the binary

entropy of the CHSH violation (i.e. S − 2) and thus at most ∼0.736 [15].

Measurement Independence

Measurement independence assumes that there is no correlation between the measurement

settings and the hidden variable. This assumption could be violated by a causal influence from

the hidden variable to the measurement setting, see Fig. 5.8a. Such models are sometimes

referred to as super-deterministic, since they seem to imply that measurement settings cannot

be chosen freely. Appealing to experimental free will to justify measurement independence,

however, is questionable, not the least because the concept of free will itself is problematic [52]

and not well-defined [45].

faster than light, as long as they do not permit superluminal signaling.
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On the other hand the hidden variable might be causally influenced by the measurement

settings. Since the latter are typically chosen after the particles leave the source, such an

influence would in general be to the past, one speaks of a retro-causal model, see Fig. 5.8b. Such

models, however, are fine-tuned to satisfy signal locality, and the causal influences may even

propagate at subluminal speeds within the past lightcone. However, not every model, which

allows for causal influences to the past can be treated within the causal modeling framework. In

general such models may lead to causal loops, such as feedback from the measurement outcomes

to the hidden variable. Examples of models involving such causal loops Cramer’s transactional

interpretation [53], the two-state vector formalism [54] or Huw Price’s interpretation [55]. Such

models are not captured by the causal modeling framework and it is difficult to even establish

a clear notion of causation in such theories.

A B

X Y

A B

X Y

ba

Figure 5.8: Relaxations of measurement independence. a In a superdeterministic model

the variable Λ may have a direct causal influence on Alice’s or Bob’s measurement setting. (b)

In a retrocausal model the measurement settings may have a direct causal influence on the

hidden variable.

Explanations of quantum correlations via relaxed measurement independence has continu-

ously attracted attention [10, 12–15, 44]. As discussed above, this does not necessarily mean

superdeterministic models where everything is predetermined, but rather models with some de-

gree of correlation between the measurement settings and the hidden variable. This correlation

can be measured in terms of the mutual information I(X,Y ∶Λ), which quantifies how much

information can be gained about the measurement settings from learning Λ or vice versa. In

Ref. [13] it was shown that a mutual information of ∼0.0463 is sufficient to simulate CHSH

correlations, and ∼0.0663 is enough for any set of projective measurement on a singlet state.

These numbers were confirmed to be tight in the case of bipartite correlations with binary

inputs and outputs, and have been generalized in various directions [15].

On the other hand, Ref. [18] showed that quantum correlations cannot be reproduced even

with arbitrary (though not complete) relaxations of measurement independence. The apparent

contradiction with Ref. [13] is resolved in the details. Specifically, in Ref. [18] a relaxation

of measurement independence is defined as a deviation from the case where all conditional

probabilities P (x, y∣λ) are balanced. Their result crucially relies on Hardy’s paradox and the

assumption that none of the probabilities P (x, y∣λ) are zero for models with arbitrary relaxation

of measurement independence. Ref. [13, 15] on the other hand follow a more general approach

that does not make any assumptions on the underlying distribution of the inputs, defining

measurement independence via the variational distance between the distributions P (x, y) and
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P (x, y∣λ).

On Common Grounds

The causal modeling approach provides a common framework for many of the discussed alter-

native explanations of quantum correlations and reveals their close connection, see Ref. [16] for

a detailed discussion. Although all the models discussed above are obtained by adding one or

more causal arrows to the causal structure of the Bell-local models, they can have very different

physical interpretations. For example, a model with an additional hidden variable that corre-

lates X and B could be super-deterministic, retro-causal or superluminal, depending on the

direction of the causal influences and the position of this additional variable in space-time [16],

see Fig. 5.9. From the point of view of causal modeling, these three models are identical. Causal

models are formulated without any reference to a spacetime structure, and are thus completely

defined by the structure of causal dependences and the causal-statistical parameters.

A B

X Y

A B

X Y

A B

X Y

ba c

Figure 5.9: Relation between various explanations for Bell correlations. Consider a

model where an additional hidden variable µ causally connects Alice’s setting choice X and

Bob’s measurement outcome B. a If µ is placed in the common past of X and B the model is

superdeterministic (or retro-causal if the direction of the arrow between X and µ is reversed. b

If µ is placed in the future of X, but in the past of B then it mediates a superluminal influence

from X to B, thus violating local causality. c) If µ is placed in the common future of X and

B the model is retro-causal but not necessarily nonlocal. (Figure adapted from Ref. [16])

Another common feature of all models discussed above, which can reproduce Bell cor-

relations is that they are unfaithful representations of the empirical conditional independence

relations. In order to satisfy the empirical constraints of marginal independence of the measure-

ment settings and signal-locality, the causal parameters of these models must be fine-tuned [16].

Indeed, the Bell-local causal structure is the only faithful representation of these constraints,

but it cannot reproduce the strength of the observed correlations.

5.4 Testing Causal Models for Quantum Correlations

Experimental tests of causal models for quantum correlations go back to the early tests of

the CHSH inequality by Freedman and Clauser [56] in 1972. These experiments demonstrated

that Bell-local causal models cannot reproduce quantum predictions, but they had to rely
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on additional assumptions to contend with experimental imperfections and a lack of space-

like separation. Since then, much experimental effort has been devoted to overcoming the

requirement for such assumptions and Bell-local causal models have now been ruled out in a

conclusive, loophole-free fashion [4–6]. This opens the path to study in more detail which of

the assumptions behind Bell-local models must give way to recover a causal picture of quantum

correlations.

A violation of the CHSH inequality is often attributed to a nonlocal causal influence,

or “quantum nonlocality”, and in particular to a failure of outcome independence5, see e.g.

Ref. [18]. As discussed in Sec. 5.6 the conventional statistical notions of parameter inde-

pendence and outcome independence do not have a causal interpretation. Instead, one can

decompose local causality into the causally meaningful assumptions of causal parameter inde-

pendence and causal outcome independence. The class of models which satisfy the former, but

may violate the latter are a direct generalization of Bell-local causal models. This class contains

all models where the measurement outcome A may influence the outcome B (see Fig. 5.7a),

or vice versa, or any linear combination of these. The set of conditional probability distribu-

tions compatible with a linear combination of two causal models is the convex combination of

the conditional probability distributions compatible with either model. Hence, the conditional

probability distributions compatible with the models studied here are of the form

p(a, b∣x, y) = ∑
λ

p(a∣x,λ)p(b∣a, y, λ)p(λ) +∑
µ

p(a∣b, x, µ)p(b∣y, µ)p(µ) , (5.14)

with ∑λ p(λ) +∑µ p(µ) = 1.

One approach to testing these models, is to directly measure the strength of the causal

link between A and B in Fig. 5.7a. This can be done using controlled interventions, where

the variable A is changed independent of the other variables in the model, and measuring

the associated change in the distribution of B. This approach can be used in any scenario,

but is device-dependent and requires detailed knowledge of the underlying causal mechanism,

including the hidden variables. Another approach, much in the spirit of quantum information,

is to study the polytope formed by the conditional joint probability distributions of Eq. (5.14).

The facets of this polytope are Bell-type inequalities, which allow for a device-independent test

of the models. If any of these inequalities is violated by quantum systems, then the model

cannot reproduce all quantum predictions.

5.4.1 Experimental Setup for Testing the CHSH Inequality

To test bipartite nonlocal causal models, pairs of photons are created in the state cosγ∣HV ⟩ +

sinγ∣V H⟩, where the parameter γ (the polarization angle of the pump beam) continuously

controls the degree of entanglement as measured by the concurrence C = ∣ sin 2γ∣, see Sec. 3.2.

Alice and Bob can each perform arbitrary local measurements on one of these photons using a

5One motivation for this might be that parameter independence, when suitably generalized holds in orthodox
quantum mechanics [7].
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combination of HWP and QWP, followed by a polarizer, see Fig. 5.10. In the case of the CHSH

inequality it is in fact sufficient to choose all measurement directions on a great circle of the

Bloch-sphere, which can be implemented using only a HWP [1].

HWP

QWPPOL

APD

SOURCE

PBS

ba

QRNG

Figure 5.10: The experimental setup. (a) Photons pairs are generated via spontaneous

parametric downconversion in a periodically poled KTP (ppKTP) crystal, using the Sagnac

design of Ref. [57]. Alice and Bob perform local measurement on their photons in the equatorial

plane of the Bloch sphere using a half-waveplate (HWP) and a polarizing beam splitter (PBS).

Additional quarter-wave plates (QWP) can be used for quantum state tomography of the

initial entangled state. In the interventional experiment an additional combination of QWP

and polarizer (POL) are used between Alice’s basis choice and her measurement. The causal

variables are indicated using the notation of Fig. b, and the hidden variable Λ need only be in

the causal past of the measurement outcomes, but not necessarily originate at the source. (b)

Sketch of the effect of the intervention in the casual model of Fig. 5.7a.

The measurement settings X, and Y are generated using the online quantum random num-

ber generator of the Australian National University, based on Ref. [58]. In contrast to the

classical counterpart, which typically produces random numbers from some underlying deter-

ministic algorithm, a quantum random number generator exploits the inherent unpredictability

of quantum mechanics and are thus capable, in principle, to produce truly unpredictable random

numbers [59]. This can be relevant for security purposes and to ensure that the measurement

settings are statistically independent from the hidden variable Λ (except in a superdetermin-

istic model). In the present experiment, the use of a quantum random number generator is

not strictly necessary, as we only require that the measurement settings satisfy marginal inde-

pendence, that is P (X,Y ) = P (X)P (Y ), which can be quantified using the maximal variation

between the joint and product distribution:

Vmi = sup
x,y

∣P (x, y) − P (x)P (y)∣. (5.15)

Besides marginal independence, the conditional probabilities also have to satisfy signal

locality, which is a consequence of special relativity. In practice, however, no finite dataset

can perfectly satisfy this condition, and residual signaling has to be taken into account when
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interpreting the results of a Bell-test experiment. Again, this can be quantified by the maximal

shift in the conditional probability of A given X due to a change of Y and vice versa for Bob6

V a
sl = sup

a,x,y,y′
∣P (a∣x, y) − P (a∣x, y′)∣

V b
sl = sup

b,y,x,x′
∣P (b∣x, y) − P (b∣x′, y)∣.

(5.16)

5.4.2 Interventional Approach

In the CHSH-scenario, passive observations alone are not enough to determine whether corre-

lations between A and B are due to direct causation or a common cause Λ. This is because a

message sent from A to B could in principle contain information about the settings, rather than

the outcomes, which is known to allow for simulation of the correlations [48]. An intervention

on the variable A, however, would break all incoming causal influences, and the remaining

correlation between A and B must stem from direct causation. The maximal shift of the prob-

ability distribution of B upon intervention on A can be used to quantify the strength of this

causal link, using the so-called average causal effect [15, 29, 60]

ACEA→B = sup
b,y,a,a′

∣p(b∣do(a), y) − p(b∣do(a′), y)∣. (5.17)

Here do(a) indicates that the variable A is set to the value a by means of an intervention,

see Sec. 5.2.1. In contrast to the measure used in Ref. [15], the average causal effect does not

require knowledge of the hidden variable7 and is thus experimentally accessible, and satisfies [1]

min ACEA→B = max [0, (Schsh − 2)/2] . (5.18)

Here the maximum is taken over the eight symmetries of the CHSH quantity, and min ACEA→B

refers to the minimal strength of the causal link A → B required for a causal explanation of a

given set of quantum correlations, which is directly proportional to SCHSH.

Experimentally, a valid intervention must modify the causal mechanism in a way that sets

the value of the variable A independent of all other variables8, thus breaking all incoming causal

arrows on A. Modifying a causal structure in this way necessarily requires some knowledge of

the underlying causal mechanisms. Consider the textbook example of interventions in a med-

ical setting, trying to establish a causal connection between hypertension and coronary heart

disease. An intervention with blood-pressure lowering medication requires knowledge of the

physiology of hypertension (i.e. the variable that is intervened upon). Moreover it has to be

assumed that the specific way of dividing patients into treatment and control groups is uncor-

6Different tests could be designed using the equivalent conditions P (A∣X,Y ) = P (A∣X) or P (A,Y ∣X) =
P (A∣X)P (Y ∣X), but these are only reliable in the case where marginal independence of the settings holds
exactly.

7The term “average” is used because the marginal distributions over the observed variables are defined as
an average over the unobserved ones.

8Strictly speaking, any modification of the “natural” causal mechanism is an intervention, even if it only
partially breaks the causal links [32, 61], but for the present purpose the strong definition is most appropriate.
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related from genetic factors or any other relevant causes. Similarly in other cases, interventions

always require detailed knowledge about potential confounding factors, and cannot exist in a

theoretical vacuum.

In the present case A corresponds to the outcome of a polarization measurement in the

linear-polarization plane, which is taken to instantiate at Alice’s PBS. The requirements of

an intervention on A can be met under the assumption that the local degrees of freedom

behave according to quantum mechanics. Such assumptions are common in quantum steering

scenarios and semi-device independent quantum cryptography, where it is assumed that the

devices of at least one of the labs can be trusted and work according to quantum mechanics.

However, this assumption does restrict the class of causal models that can be tested with

an interventional approach. Randomly projecting Alice’s photon onto circular polarization

states—which are mutually unbiased with respect to to all CHSH measurements—then erases

all relevant information, and re-preparation in the eigenstates of the PBS forces one of the

two outcomes A = ±1. This corresponds to the operators {∣H⟩⟨R/L∣, ∣V ⟩⟨R/L∣}, which are

implemented experimentally using a quarter-waveplate and a polarizer.

This kind of intervention relies on the symmetry of the problem, where all information is

encoded in linear polarization states. If this was not the case, an alternative approach could

be to replace Alice’s photon after the setting choice with a new photon. This is technically

more challenging, since it requires careful synchronization of the new photon with the incoming

photon of Alice and might potentially open additional loopholes. The simpler implementation

of preserving the photon but erasing the relevant polarization information is much less invasive,

but involves an unbiased loss of 50% due to the use of a polarizer. This could potentially be

overcome by using a polarizing beamsplitter instead and combining both beams at Alice’s

detectors. However, to avoid any bias the settings for the intervention elements are chosen

randomly using quantum random numbers from the Australian National University’s online

quantum random number generator based on Ref.[58]. This loss can thus be absorbed into the

fair-sampling assumption.

A crucial aspect of the experiment is to establish multi-point correlations between all in-

volved variables, not just statistical correlations between the outcomes. Each individual click

event was registered and correlated using an AIT-TTM8000 time-tagging module with a tempo-

ral resolution of 82 ps. Outcome probabilities, used to estimate ACEA→B, were then computed

from a total of 48,000 coincidence counts, with no more than one event for each set of random

choices for X,Y and the two elements of I.

Experimental Results

Using this interventional approach the average causal effect can be bounded to below ACEA→B =

0.02+0.02
−0.02 for six different partially entangled states, and is largely independent of the observed

CHSH value see Fig. 5.11. As shown in Fig. 5.11 a slight increase of the observed values of

ACEA→B with the entanglement of the used state is observed. This is in accordance with the

expectation that states with higher entanglement are more susceptible to Poissonian noise due
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Figure 5.11: Observed average causal effect ACEA→B versus measured CHSH-value.

(a) Any value below the dashed red line, given by Eq. (5.18), is not sufficient to explain the

observed CHSH-violation. All errors represent 3σ statistical confidence intervals obtained from

a Monte-Carlo simulation of the Poissonian counting statistics. The blue shaded area represent

the 3σ region of Poissonian noise compatible with ACEA→B = 0. Since the quantity ACEA→B is

bounded from below by 0 (the hatched area), the distribution of statistical errors is expected

to be asymmetric. (b) Distribution of expected values for a nominal ACEA→B = 0 due to

statistical noise (blue) or statistical noise and systematic imperfections (orange). 1σ and 3σ

statistical confidence intervals are indicated.

to a lower average count-rate per measurement setting. Moreover, since the quantity ACEA→B

is bounded from below by 0, every systematic imperfection and statistical noise tend to push

the observed values away from this boundary. Monte-Carlo simulations of the Poissonian

noise alone suggest expected values between ACEA→B = 0.005+0.011
−0.005 for the least entangled

and ACEA→B = 0.007+0.015
−0.006 for the most entangled state in the experiment. These median

and variance of these values increase slightly when additionally taking into account known

systematic imperfections in the used waveplates.

As shown in Fig.5.11, all observed values are indeed compatible with ACEA→B = 0 at the

3σ-level of statistical noise (blue shaded region). Within current experimental capabilities

this demonstrate that CHSH violations above a value of Schsh = 2.05 ± 0.02 cannot be fully

explained by means of a direct causal influence from one outcome to the other. In other words,

the potential causal influence between Alice’s and Bob’s measurement—the green arrow in

Fig. 5.7a—is not sufficiently strong.

Marginal independence of the measurement settings was tested using Eq. (5.15), obtaining

a median of Vmi∼0.0014 and sample variance of ∼10−6 across the six datapoints in Fig. 5.11.

Signal locality for Alice (Bob) was tested using Eq. (5.16) and found to be satisfied to within

a median variation of VslA∼0.0047 (VslB∼0.0092) with sample variance of ∼7 × 10−6 (∼7 × 10−5).
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5.4.3 Observational Approach

Interventions are an interesting conceptual tool and central to the study of causal models. In

principle they can be used on any causal model (not on any variable of the model though) to

quantify the strength of causal links. However, since interventions aim to modify the causal

mechanism which determines the value of a variable (here A) they require detailed knowledge

about the physical representation of this variable and are thus necessarily device-dependent.

Instead of trying to quantify a potential causal link, however, one could instead study the set

of probability distributions that are compatible with the model. These form a polytope, which is

bounded by Bell-type inequalities, such as the CHSH inequalities for the model in Fig. 5.4b. In

the case of a causal influence either from A to B or from B to A, the corresponding probability

distributions are given by Eq. (5.14). In the CHSH case with two inputs and two outputs for

each party, this set covers all quantum distributions and this method can make no nontrivial

statement about such models. Curiously, however, the situation changes when considering a

situation with more settings than outcomes. This suggests communication of the measurement

settings is more powerful than communication of the measurement outcomes, in accordance

with a similar result of Ref. [48]. It would be interesting to study this behaviour in more detail.

Specifically in the case of three settings and two outcomes, one of the facets of the polytope is

given by the inequality [15]

S3 = ⟨E00⟩ − ⟨E02⟩ − ⟨E11⟩ + ⟨E12⟩ − ⟨E20⟩ + ⟨E21⟩ ≤ 4. (5.19)

This inequality is symmetric in A and B, and thus satisfied by any model with a causal influence

from either party to the other (i.e. any convex combination of the model in Fig. 5.7a and the

model with the A → B arrow reversed), but can be violated by entangled quantum states.

Testing this inequality thus amounts to testing the model in Fig. 5.7a in a device-independent

fashion and without committing to any particular temporal ordering of A and B. Curiously,

Eq. (5.19) seems to be related to a chained Bell inequality of Ref. [62] under relabelling of the

settings. However, such relabellings are not symmetry transformations in a model where B

may statistically depend on A, and there is no logical relationship between the inequalities.

To test inequality (5.19) it is sufficient to consider measurements in the equatorial plane

of the Bloch-sphere, see Fig. 5.12a. These can be implemented using the setup in Fig. 5.10

with the intervention elements I removed. The maximal violation of S3 = 3
√

3 is achieved for

a maximally entangled state (corresponding to γ = 45○) and measurement angles with respect

to ∣H⟩ of {−π/6,7π/6, π/2} for Alice and {−π/3, π/3, π} for Bob. As in the case of the CHSH

inequality, it is possible to optimize these measurement settings for the specific state used

in the experiment. In this case a violation is theoretically possible for every non-separable

quantum state, see Fig. 5.12b. Experimentally, a maximal value of S3 = 5.16+0.02
−0.02 was achieved,

correspond to a violation of Eq. (5.19) by more than 170 standard deviations.
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Figure 5.12: Experimental test of inequality (5.19). (a) The measurement settings for

Alice (red) and Bob (blue) achieving maximal violation of the inequality can be chosen in the

equatorial plane of the Bloch sphere. (b) Observed values S3 for a variety of quantum states

of the form cos(γ)∣HV ⟩ + sin(γ)∣V H⟩. Data from a fixed measurement scheme (optimal for

the maximally entangled state, γ = 45○) are shown in orange, with the dotted, orange line

representing the corresponding theory prediction. The blue data and blue dashed theory line

corresponds to the case where measurement settings were optimized for the prepared states.

The black line represents the bound of inequality (5.19); any point above this line cannot be

explained causally by a model of the form in Fig. 5.7a. Error-bars correspond to 3σ statistical

confidence intervals.

5.5 Discussion and Outlook

The local causal models ruled out by Bell’s theorem have a natural representation within the

causal modeling framework by the causal structure of Fig. 5.4b. Most relaxations of Bell’s as-

sumptions can similarly be given a causal interpretation, which corresponds to structures with

additional causal arrows. Such model directly generalize the original structure and contain

Bell’s local causal models as a special case. This makes the causal modeling framework an

excellent, and intuitive platform for studying such relaxations. In contrast to Bell’s original

argument, causal models are formulated without any reference to a spacetime structure. Curi-

ously, however, the assumptions of classical causality alone are sufficient to derive Bell’s local

causal model as the only faithful representation of the experimental observations in a CHSH

experiment [16].

When it comes to testing candidate causal models, interventions offer a direct way of quan-

tifying the strength of potential causal links, that is very close to the spirit of causal modeling.

However, this approach is necessarily device- and theory-dependent, which limits its applica-

bility to testing ontological models for quantum correlations with a specific form of the hidden

variables. Moreover, not every variable can be intervened upon, and models such as those that

relax measurement independence [17, 18, 63], or feature objective wavefunction collapse [34]

require different methods. On the other hand, studying the set of conditional joint probability

distributions compatible with a given causal models produces device-independent inequalities.

A violation of such an inequality constitutes a general test of arbitrary hidden variable models
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that respect the corresponding causal structure.

Curiously, the CHSH scenario with two parties, two inputs and two outcomes, does not lead

to nontrivial device-independent inequalities for a causal structure with additional arrows with

respect to the Bell-local one. However, once the number of possible measurement settings is

larger than the number of outcomes, a model that only allows communication of measurement

outcomes cannot reproduce quantum predictions any more. This suggests that communication

of the measurement settings is more powerful than communication of the measurement out-

comes, which is in accordance with a similar result of Ref. [48]. It would be interesting to study

this behaviour in more detail and for more complicated scenarios.

The results in Sec. 5.4 rule out any causal model which explains CHSH correlations in

terms of a causal link from either measurement outcome to the other. In other words, a

violation of causal outcome independence is insufficient to recover a causal explanation of

quantum correlations. This adds another piece to the puzzle of ontological models for quantum

correlations, see Chap. 4. It is now of great interest to extend these methods to other classes

of causal models for CHSH correlations [12–18], and beyond.

5.5.1 Loopholes

Early experimental tests of the CHSH inequality had to rely on auxiliary assumptions to contend

with experimental imperfections and a lack of spacelike separation. This allows for loopholes,

where a violation of the inequality could be attributed to a failure of one or more of the auxiliary

assumptions, rather than a failure of Bell-locality.

Fair Sampling

Most photonic experiments, for example, suffer from low detection efficiency and thus rely on

fair-sampling. A model is fair-sampled, if the loss is unbiased at the hidden variable level.

On the other hand, unfair-sampled causal models might be such that events which lead to a

violation of the tested inequality are more likely to be detected than those that don’t. Such

an argument can, however, only be made up to a certain threshold efficiency. In the case

of the standard CHSH inequality this threshold is ∼ 83% [64]. However, by settling for a

smaller possible violation of the inequality, efficiencies as low as 2/3 can be sufficient to rule

out Bell-locality [65]. In the present case the required efficiency for an experiment without the

fair-sampling assumptions is ∼ 88%, but it is possible that a similar argument as before can

be used to lower this bound [1].

Locality

In standard CHSH tests, Bell’s assumption of local causality is typically justified by ensur-

ing spacelike separation of the two sides of the experiment and appealing to special relativity.

Using fast electronics this requirement can be met with photons using a separation on the

order of merely 100m [5, 6]. Importantly, however, this requirement is used to justify why
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one should adopt a Bell-local model. The causal model itself, does not contain any notion of

spacelike separation or even a notion of physical time and speed of causal influences. In par-

ticular when testing causal models that relax local causality, and are thus explicitly nonlocal,

spacelike separation cannot be used to justify any causal independence. The causal and statis-

tical independences are implied by the model, independent of any spacetime narrative. If the

inequalities implied by the model are violated, then the model cannot explain the experimental

observations.

Measurement Independence

As with local causality, the measurement independence assumption, that the choices of mea-

surement settings are statistically independent of the hidden variable, is typically justified by

spacelike separation of the setting choices from the source [6]. Curiously, this assumes that

the hidden variable originates at, or close to the source, which need not necessarily be the

case. As with the locality loophole, this step is merely a justification by appealing to special

relativity, rather than a strict requirement. A violation of the CHSH inequality shows that

Bell’s local causal model cannot reproduce the experimental observations. If the measurement

settings are not spacelike separated, then a possible explanation is subluminal influences from

the measurement settings to the hidden variable. If they are spacelike separated, then such an

explanation would either require superluminal influences, or would require the hidden variable

to originate further in the past. To push the latter case some billions of years into the past, it

has been suggested to use light from distant quasars to determine measurement settings [63].

5.5.2 Relation to Previous Work

Leggett models

Previous work on models beyond Bell-locality focused mainly on Leggett’s crypto nonlocal-

ity [66–68], which refers to a class of nonlocal hidden variable models where the hidden variables

are product quantum states. In other words, in each run of the experiment the the subsystems

are assumed to behave as if they were in definite pure quantum states, and thus satisfy local

quantum mechanics, while there are no restrictions on the correlations [11, 69]. Assuming ad-

ditionally measurement independence, signal locality and non-negativity of probabilities, such

a model nonetheless imposes constraints on the correlations of two quantum systems. The con-

straints from crypto-locality, however, are logically unrelated to Bell-locality and either may

be satisfied or violated independent of the other [70]. Rather than focusing on nonlocality,

Leggett’s model is “an attempt at keeping the correlations and reintroducing sharp properties

at the individual level as well” [11]. A violation of generalized Leggett inequalities implies

that the constituents of a maximally-entangled singlet-state cannot have even partially defined

individual properties, in the sense of local mixed states, rather than pure states.
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Finite Speed Influences

Other experiments have studied nonlocal causal models by establishing lower bounds on the

speed of potential superluminal causal influences in CHSH experiments [71, 72]. In a multi-

partite case it was further shown that for any model based on finite-speed superluminal causal

influences, it is possible to construct a multipartite experiment which would reveal a violation

of signal locality for this model [72]. The results presented in Sec. 5.4 are consistent with this

theorem, since causal models are formulated without any reference to a spacetime structure,

allowing causal influences to propagate at sub- or superluminal, instantaneous, or even to the

past, as long as it does not create any causal loop.

5.5.3 Beyond Classical Causal Modeling

Causal models are a very useful tool for a systematic study of relaxations of the causal assump-

tions behind Bell-locality. This covers a large range of models, which despite being fine-tuned,

all feature some compromise of how we think about causality, including measurement depen-

dence, retro-causality, and nonlocal influences.

However, not every model fits within the causal modeling framework. One example is to

treat the pair of measurement outcomes in a CHSH-inequality test as one entity with multiple

causes (X,Y,Λ). In this case the causal Markov condition does not apply, since both outcomes

are a single event, but this seems to avoid the problem, rather than solving it [33]. This argu-

ment is akin to the observation that the Born rule seems to be in conflict with the factorization

property of classical causal modeling [23]. Related to this idea, one could consider “perspecti-

val” dependences, which are undirected edges that can adopt either direction depending on the

perspective and epistemic restrictions of the agent that assigns the causal model [36]. In the

CHSH case, for example, Alice might imagine a model where her measurement outcome causes

Bob’s via a path through the hidden variable, A→ Λ→ B, while Bob might assign the reverse

B → Λ→ A. Neither of these models are objective, but rather represent the direction in which

information is gained about the system [36]. Similar perspectival problems arise in cosmology,

where we attribute objective status to quantities like the average density of the universe, which

are not empirically accessible to us as observers [73].

Finally the causal modeling framework might need to be generalized to appropriately treat

quantum systems. This might entail introducing “non-classical” nodes as a generalization of

latent variables [25], which are considered unobservable, thus defying the possibility of inter-

ventions. Alternatively one may consider all nodes in principle observable and instead modify

the criterion by which independence is decided, such as giving up the factorization part of Re-

ichenbach’s principle [23]. Other work has considered replacing conditional probabilities with

quantum conditional states in an effort to generalize Bayes theorem and Bayesian conditioning

to the quantum case [74]. An alternative approach is to redefine causal models from bottom

up, using the quantum formalism, where nodes are local operations and causal influences are

represented by quantum channels [32]. Such a framework accommodates a general notion of

176



intervention (as the choice of an instrument, or a set of quantum operations), which means that

causal discovery remains possible. This framework also recovers classical causal models in the

appropriate limit (where all operations are diagonal in a fixed basis), without any changes to

the causal structure [32].
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outcome information for violation of Bell’s inequality. New J. Phys. 12, 083051 (2010).

[49] Dash, D. Restructuring dynamic causal systems in equilibrium. Proc. 10th Conf. Artificial

Intell. and Stat. (2005).

[50] Stenner, M. D., Gauthier, D. J. & Neifeld, M. A. The speed of information in a ’fast-light’

optical medium. Nature 425, 695–698 (2003).

[51] Toner, B. F. & Bacon, D. Communication cost of simulating Bell correlations. Phys. Rev.

Lett 91, 187904 (2003).

[52] Hossenfelder, S. Free will is dead, let’s bury it. Backreaction (Blog) (2016).

[53] Cramer, J. G. An Overview of the Transactional Interpretation. Int. J. Theor. Phys. 27

(1988).

[54] Aharonov, Y. & Vaidman, L. The Two-State Vector Formalism of Qauntum Mechanics:

an Updated Review. arXiv:quant-ph/0105101 (2001).

[55] Price, H. & Wharton, K. Disentangling the Quantum World. Entropy 17, 7752–7767

(2015).

[56] Freedman, S. J. & Clauser, J. F. Experimental Test of Local Hidden-Variable Theories.

Phys. Rev. Lett. 28, 938–941 (1972).

[57] Fedrizzi, A., Herbst, T., Poppe, A. & Zeilinger, A. A wavelength-tunable fiber-coupled

source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007).

[58] Symul, T., Assad, S. M. & Lam, P. K. Real time demonstration of high bitrate quantum

random number generation with coherent laser light. App. Phys. Lett. 98 (2011).

[59] Herrero-Collantes, M. & Garcia-Escartin, J. C. Quantum Random Number Generators.

arXiv:1604.03304 (2016).

[60] Janzing, D., Balduzzi, D., Grosse-Wentrup, M. & Schölkopf, B. Quantifying causal influ-

ences. Ann. Stat. 41, 2324–2358 (2013).

[61] Korb, K. B., Hope, L. R., Nicholson, A. E. & Axnick, K. Varieties of Causal Intervention.

In PRICAI 2004: Trends in Artificial Intell., 322–331 (Springer, 2004).

[62] Braunstein, S. L. & Caves, C. M. Wringing out better Bell inequalities. Nucl. Phys. B 6,

211–221 (1989).

[63] Gallicchio, J., Friedman, A. S. & Kaiser, D. I. Testing Bell’s Inequality with Cosmic

Photons: Closing the Setting-Independence Loophole. Phys. Rev. Lett. 112, 110405 (2014).

181



[64] Garg, A. & Mermin, N. D. Detector inefficiencies in the Einstein-Podolsky-Rosen experi-

ment. Phys. Rev. D 35, 3831–3835 (1987).

[65] Eberhard, P. H. Background level and counter efficiencies required for a loophole-free

Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, R747–R750 (1993).

[66] Leggett, A. J. Nonlocal hidden-variable theories and quantum mechanics: An incompati-

bility theorem. Found. Phys. 33, 1469–1493 (2003).

[67] Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Zukowski, M., Aspelmeyer, M.
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CHAPTER 6

Pushing Joint-Measurement Uncertainty to the

Limit
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6.1 Introduction

T
he state of a classical physical system is captured by a point in phase space, for example,

a set of position and momentum values for a mechanical system. These properties are

in principle exactly defined and with a suitable measurement device they can be measured to

arbitrarily high precision. In the quantum realm, however, this dream of perfect measurement

hits a fundamental limit, the Heisenberg uncertainty principle.

Heisenberg famously illustrated this principle at the example of a γ-ray microscope, used for

measuring position and momentum of an electron. The position can be measured by exposing

the electron to a flash of light and taking a picture of it, and the momentum can be determined

from two such pictures. As with every optical microscope the resolution of such a picture is

limited by the wavelength of the light that is used. In order to increase the precision of the

position measurement shorter wavelength light must be used. This, however, means that the

light is more energetic and thus imparts a larger momentum kick to the electron, which disturbs

the momentum measurement by causing the electron to move in a random direction. Heisenberg

postulated that this is not a shortcoming of the specific apparatus, but a fundamental feature

of nature.

The Heisenberg microscope has become the archetypal illustration of Heisenberg’s uncer-

tainty principle and the famous uncertainty relation ∆x∆p ≥ h̵/2. What is less well-known is

that there is much more to the story than this relation, which was neither derived by Heisen-

berg, nor does it capture the microscope example. Heisenberg’s seminal 1927 paper [2] does not

contain any rigorous quantitative statements, but instead describes three qualitative features

of the uncertainty associated with incompatible observables, see Fig. 6.1:
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(I) Two incompatible observables cannot be arbitrarily well defined on a quantum state.

(II) Two incompatible observables cannot be jointly measured with arbitrary accuracy.

(III) The measurement of one such observable disturbs the subsequent measurement of the

other.

B
-1 +1 B

A
ρ -1 +1

ηB

-1 +1 B
A-1 +1

ρρ
A

-1 +1 -1 +1
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a b c

Figure 6.1: The three faces of Heisenberg’s uncertainty principle. (a) Preparation

Uncertainty. A quantum system cannot be prepared in a state ρ, such that two incompatible

observables A and B are arbitrarily well defined on ρ. (b) Joint-Measurement Uncertainty.

Two incompatible observables A and B cannot be jointly measured on a state ρ with arbitrary

accuracy. A joint-measurement deviceM can only approximate them by compatible observables

A and B, respectively. (c) Measurement-Disturbance. The approximate measurement A

of the observable A disturbs the subsequent measurement of the incompatible observable B.

6.2 Heisenberg’s Uncertainty Principle

“The uncertainty principle refers to the degree of indeterminateness in the

possible present knowledge of the simultaneous values of various quantities

with which the quantum theory deals; it does not restrict, for example, the

exactness of a position measurement alone or a momentum measurement

alone” - W. Heisenberg, 1930

6.2.1 The Uncertainty Principle

Heisenberg’s seminal 1927 paper “Über den anschaulichen Inhalt der quantentheoretischen

Kinematik und Mechanik” [2] provided much of the intuition that still guides the study of

quantum uncertainty. The purpose of the paper was to motivate and provide intuition1 for

the uncertainty principle, which describes qualitative uncertainty trade-offs. The quantitative

aspect of the uncertainty principle is captured by so-called uncertainty relations, which Heisen-

berg did not derive in his paper. He did, however, conjecture that a relation of the following

form should hold

q1 p1 ∼ h, (6.1)

1The key word in the title is “anschaulich”, which in this context is best translated to “intuitive”.
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where q1 and p1 represent, depending on the context, various forms of position and momentum

uncertainties, respectively. Heisenberg did not prove this relation—which he saw as a physical

manifestation of the commutation relations of incompatible observables—but he justified it for

a number of explicit physical examples. Heisenberg’s conjecture, Eq. (6.1), captures two central

insights

• The scale at which quantum uncertainty becomes important is on the order of the fun-

damental constant h.

• Uncertainty relations describe trade-offs, rather than absolute limits; any one measure-

ment can, in principle, be made arbitrarily precise at the cost of making the other in-

creasingly imprecise.

Heisenberg realized the status of the uncertainty principle as a fundamental feature of quantum

theory: “if there existed experiments, which allowed simultaneously a “sharper” determination

of p and q than equation (6.1) permits, then quantum mechanics would be impossible” [2].

Heisenberg’s paper contains at least three distinct ideas which he illustrates with practical

examples.

Measurement and disturbance The tradeoff between measurement accuracy and distur-

bance (III above) is one of the central topics of Heisenberg’s work. Based on his famous

γ-ray microscope, he argues that knowing the position of an electron (i.e. measuring it) with

(in)accuracy q1 must cause a disturbance of the electron’s momentum, such that it can only be

determined up to the accuracy p1 [2]. Based on the Compton-effect he concludes that p1 and

q1 must obey Eq. (6.1).

Joint measurements Heisenberg also discusses an error-trade-off scenario (II above), stating

that Eq. (6.1) shows that an “exact energy measurement can only be achieved with according

inaccuracy in time” [2].

Preparation uncertainty Although Heisenberg focuses mostly on measurement-based ar-

guments, he typically associates uncertainty with the width of the wavefunction. In particular,

he argues that a Gaussian wavepacket with a width of q1 in position must have a width of at

least p1 in momentum, satisfying Eq. (6.1), and sketches a proof of a preparation uncertainty

relation. He also discusses a “fundamental uncertainty in the initial conditions”, which today

we would call preparation uncertainty.

An epistemic view point Heisenberg’s discussion is strongly influenced by his Copenhagen-

ist view of the quantum state. For example, in his discussion of the atomic orbit of an electron,

he suggests that the orbit “comes into existence only due to it’s observation” [2]. Following

this theme, he argues that terms like “position” only make sense in conjunction with an experi-

mental prescription for measuring it. As a consequence of this measurement-centred discussion
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Heisenberg generally associates the uncertainty in the knowledge of the position (which he

uses synonymously with measurement accuracy) with the width of the (post-measurement)

wavefunction. The lack of rigorous distinction between Heisenberg’s different conceptual ideas,

together with Heisenberg’s endorsement of the Kennard relation [3] ∆x∆p ≥ h̵/2 might have

contributed to the still ongoing debates about the precise formulation of measurement uncer-

tainty relations.

6.2.2 Incompatible Observables

Two observables A and B are compatible, or jointly measurable, if there is a measurement M

such that the statistics of A and B can be obtained as the marginal distributions ofM. As an

example consider a system consisting of two qubits and two-outcome observables A = σz and

B = σx. The measurement of A on the first qubit is trivially compatible with a measurement

of B on the second qubit. The four-outcome measurement M defined by the POVM elements

{∣0⟩⟨0∣⊗∣+⟩⟨+∣, ∣0⟩⟨0∣⊗∣−⟩⟨−∣, ∣1⟩⟨1∣⊗∣+⟩⟨+∣, ∣1⟩⟨1∣⊗∣−⟩⟨−∣} reproduces the statistics of both measure-

ments by summing over the respective other outcome. In contrast, when A and B are measured

on the same system they are incompatible and there is no single joint measurement that can

reproduce the statistics of both for all input states.

The crucial observation is that A and B are non-commuting observables [A,B] = [σzσx −

σxσz] = 2iσy ≠ 0, but they do commute when measured on different systems. Any pair of com-

muting observables can be jointly measured, but the converse is only true for sharp observables

(i.e. projective measurements) [4]. In this case, a commonly used measure of compatibility is

thus the effective commutator of the two observables

CAB =
1

2i
⟨[A,B]⟩ρ (6.2)

An interesting property of this quantity is that it depends on the state ρ on which the measure-

ment is performed. Hence, CAB can be zero even for two non-commuting sharp observables,

such as A = σz, B = σx, and ρ is in the xz-plane of the Bloch-sphere [5].

In the general case commutativity is not necessary for observables to be compatible. Neces-

sary and sufficient conditions for joint measurability for general POVMs have been derived [6–8]

and reviewed in Ref. [4]. For example, sufficiently unsharp versions of a pair of non-commuting

unbiased projective measurements, see Fig 6.2, can be jointly measured if and only if the

corresponding Bloch vectors satisfy [6]

∥a⃗ + b⃗∥ + ∥a⃗ − b⃗∥ ≤ 2 (6.3)

Besides, or perhaps related to, their role in quantum uncertainty, incompatible observables also

play a crucial role in other areas of quantum foundations, such as the study of non-classical

correlations. Specifically, joint measurability is equivalent to quantum steering in the sense that

steering is possible if and only if the steering party uses incompatible measurements [9, 10].

In the case where Alice uses a pair of incompatible two-outcome POVMs it is even possible
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Figure 6.2: Compatible and incompatible qubit observables. (a) Two projective observ-

ables along orthogonal directions on the Bloch-sphere are incompatible and cannot be jointly

measured. There is no physical joint measurement (i.e. vector within the Bloch-sphere) that

could reproduce the statistics of both. b) Sufficiently unsharp versions of the observables in a)

can be jointly measured by means of the measurement M

to demonstrate Bell-nonlocality with a suitable bipartite state and observables for the other

party [11]. Hence, there is no local-causal model that can reproduce the correlations arising

from pairs of incompatible two-outcome measurements on a shared quantum system. For more

general sets of POVMs, however, the latter result does not hold up [9, 12].

6.2.3 Preparation Uncertainty

A quantum system cannot be prepared in a state ρ such that two incompatible

observables A and B are arbitrarily well defined on ρ.

The preparation uncertainty principle is motivated by Heisenberg’s argument that a Gaus-

sian wavepacket with width q1 in position must have a corresponding width p1 in momentum,

such that q1p1 ∼ h̵. The width of the wavepacket is a measure of the statistical spread of the

corresponding properties in the state ρ, rather than our ability to measure it. Heisenberg’s ar-

gument thus implies that it is impossible to prepare a quantum state that is very well localized

in position and at the same time has a well-defined momentum. Formally, the statistical spread

ρ
A

-1 +1 -1 +1

B

Figure 6.3: Preparation Uncertainty Principle. It is not possible to prepare a quantum

state ρ which simultaneously has well-defined values for two incompatible observables A and

B. Preparation-uncertainty relations show that a gain in precision for A comes with a loss in

precision for B.

(or width of the wavepacket) is quantified by the standard deviation ∆A =
√

Tr[A2ρ] −Tr[Aρ]2.
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Using this definition, Kennard in 1927 derived the famous uncertainty relation for position and

momentum, which was soon generalized by Robertson to arbitrary sharp observables [3, 13]

∆A∆B ≥
1

2
∣ ⟨[A,B]⟩ρ ∣. (6.4)

This “textbook” uncertainty relation is most well-known in its canonical position-momentum

form, ∆x∆p ≥ h̵/2, where it implies that the product of position uncertainty and momentum

uncertainty must be larger than the constant h̵/2.

For other observables, in particular bounded qubit observables, the relation, however, has

two rather undesirable properties, which have received more attention in recent rigorous dis-

cussions of the uncertainty principle, see e.g. Ref. [5]. It is state-dependent, and it imposes

bounds that can in general not be satisfied. In the case of a qubit, for example, whenever ρ lies

in the plane spanned by A and B, but is not aligned with either A or B, the right-hand side of

Eq. (6.4) vanishes, although both ∆A and ∆B are strictly positive [5]. The state-dependence

of the bound itself means that evaluating it requires knowledge of the state, but once A,B and

ρ are all specified, there is no freedom for ∆A and ∆B anymore. The relation thus becomes

somewhat superfluous, since the relevant uncertainties can be calculated directly [14].

0.0 0.5 1.0
0.0

0.5

1.0

Figure 6.4: Preparation Uncertainty Relation. Abbott et al’s tight state-independent

preparation uncertainty relation in the ∆A/∆B-plane for a⃗ · b⃗ = 0 (blue), a⃗ · b⃗ = 1/2 (orange),

and a⃗ · b⃗ = 3/4 (green) [5]. The gray area is forbidden by the respective uncertainty relation.

When the goal of a preparation uncertainty relation is to describe the minimum-uncertainty

states with respect to two incompatible observables, a formulation that depends only on the ob-

servables, but not on the state is desirable. In the case of qubits, simple geometric arguments can

be used to provide tight state-independent uncertainty relations for arbitrary observables [5].

Tight here means that these relations describe the optimal trade-off between the uncertainties

and can always be saturated by some quantum state. For two sharp measurements the optimal

trade-off is given by [5]

(∆A)2 + (∆B)2 + 2∣a⃗ · b⃗∣
√

1 − (∆A)2
√

1 − (∆B)2 ≥ 1 + (a⃗ · b⃗)2. (6.5)
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Curiously, geometric arguments naturally lead to a relation which does not have the product

form of the Robertson relation, Eq. (6.4), but rather involve sums of variances. This ensures

that as one uncertainty goes to zero, the other does not necessarily diverge, as one would expect,

at least for bounded observables.

6.2.4 Joint-Measurement Uncertainty

Two incompatible observables A and B cannot be jointly measured on a

quantum state ρ with arbitrary accuracy.

In contrast to preparation uncertainty, this is a not a statement about the quantum state.

but about our ability to measure the two incompatible observables. When A and B are incom-

patible, there is no joint measurement that reproduces the statistics of both observables for

any input state. However, the joint measurement can still be approximated2 by measuring an

observable M and defining approximations A=f(M) and B=g(M), see Fig. 6.5. Specifically,

for an outcome m of M, the joint-measurement apparatus outputs f(m) to approximate the

measurement of A and g(m) to approximate the measurement of B. In fact, every measurement

can be used as an approximate joint measurement for any pair of observables, some are just

more useful than others [15].

Figure 6.5: Joint-measurement uncertainty principle. Two incompatible observables

A and B cannot be jointly measured on a quantum state ρ with arbitrary accuracy. Any

joint-measurement performed on the state ρ, can only measure approximate observables A

and B. Measurement uncertainty relations aim to quantify the optimal trade-off between the

approximation errors for A and B.

Joint-measurement uncertainty relations aim to quantify the optimal trade-off between the

approximation errors for A and B. There are actually at least two questions that could be

asked

1. What is the best performance of an approximate joint measurement device over all pos-

sible input states?

2. How well can the joint measurement be approximated on a given quantum state ρ.

In the first case, a state-independent uncertainty relation is most appropriate, since it should

hold for every quantum state, see e.g. Ref. [16]. In the second case, which we will discuss here,

2Recall that, for example, sufficiently unsharp versions of an incompatible pair of projective measurements
are jointly measurable, see Sec. 6.2.2.
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the trade-off in approximation errors should be optimized for a specific, known quantum state

ρ. Since in general this might work better for some states than for others, we expect this case

to be described by a state-dependent relation. In contrast to the preparation uncertainty case,

once A,B and ρ are fixed, there is still freedom in the approximation errors, since they also

depend on the implementation of the joint measurement.

Formally the measurement inaccuracy or approximation error can be quantified by the

root-mean-square error between the approximate and ideal observables [17–20]

εA = Tr[(A−A⊗ 1)2ρ⊗ ∣ζ⟩⟨ζ ∣]1/2,

εB = Tr[(B−B ⊗ 1)2ρ⊗ ∣ζ⟩⟨ζ ∣]1/2,
(6.6)

where ∣ζ⟩⟨ζ ∣ is the initial state of an ancillary system used for the approximate measurement.

Heisenberg’s intuition was that the measurement errors should also be restricted by a relation

of the form εAεB ∼ h. Hence, it was generally assumed that Robertson’s relation, Eq. (6.4)

would also hold for joint-measurement uncertainty, with the measurement inaccuracies εA and

εB replacing the standard deviations ∆A and ∆B in Eq. (6.4)

εAεB ≥ ∣CAB ∣. (6.7)

It was not until 1965, that this relation was formally proven for position and momentum

measurements by Arthurs and Kelly [21] and by Arthurs and Goodman in 1988 for the general

case [22]. The derivation of this relation, however, relied on the restrictive assumption that

the mean errors are independent of the measured state, and can be violated when all possible

approximate measurements are considered3 [17, 19, 23], see Fig. 6.6.

To overcome this problem, Ozawa derived a universally valid joint-measurement uncertainty

relation [18] (and a similar relation was derived by Hall [15] with ∆A and ∆B instead of ∆A

and ∆B)

εAεB + εA∆B + εB∆A ≥ ∣CAB ∣. (6.8)

Ozawa’s relation, however, although it cannot be violated by any quantum state, can also not

be saturated, except in special cases [19]. It was not until 2013 that Branciard [19, 24] derived

a joint-measurement uncertainty relation, which is universally valid and can be saturated.

∆B2ε2
A +∆A2ε2

B + 2
√

∆A2∆B2−C2
AB εA εB ≥ C2

AB, (6.9)

where ∆A and ∆B are the standard deviations ofA andB on the state ρ. In the case where ρ is a

pure state, the relation is tight [19], which means that is describes the optimal trade-off between

the inaccuracies of the approximate measurementsA and B, see Fig. 6.6. Interestingly, achieving

this optimal trade-off and saturating Eq. (6.9) may require the approximate observables A and

B to have different spectra than A and B—i.e. the optimal output values f(m) and g(m) may

3In particular the Arthur-Kelly relation implies that as one estimation error goes to zero, the other must go
to infinity. For bounded operators, such as qubit observables this cannot happen. In the case of the Robertson
relation this is not a problem, since there the right-hand side goes to zero as one of ∆A,∆B goes to zero.
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Figure 6.6: Joint-measurement uncertainty relations. Joint-measurement uncertainty

relations are manifest as forbidden regions in the εA/εB-plane, here shown for two orthogonal,

projective qubit measurements and a pure state that is orthogonal to both, see Fig. 6.11.

Values below either curve are not allowed by the respective uncertainty relation. The naive

Arthurs-Kelly relation (6.7) (dashed line, top-right) imposes a very loose bound that can be

violated by general approximate measurements. Ozawa’s relation (6.8) (dashed line, bottom-

left) is universally valid, but cannot be saturated in practice. Branciards joint-measurement

relation (6.9) (solid, blue) is tight for pure states and quantifies the optimal trade-off between

the inaccuracies of the approximate measurements A and B.

not be eigenvalues of A and B.

6.2.5 Measurement-Disturbance

A measurement of one observable disturbs a subsequent measurement of an

incompatible observable.

The measurement-disturbance scenario is the motive of the famous Heisenberg microscope.

In a sequential measurement of two incompatible observables, the more accurate the first mea-

surement is, the more it disturbs the subsequent measurement. The aim of measurement-

disturbance relations is to find the optimal trade-off between the inaccuracy εA of the first

measurement and the disturbance ηB imparted onto the second, see Fig. 6.7. As in the previous

case, one could be interested in a state-independent assessment of the sequential-measurement

device. This would quantify the minimal disturbance that such a device must impart on some

quantum state, given that it can perform the first to a certain accuracy (on some potentially

different state) [16, 25].

The measurement-disturbance scenario can in fact be seen as a special of the joint-measurement

scenario discussed above. To see this, simply draw a box around the sequential measurement

scheme and call it a joint-measurement device, see Fig. 6.7b. The εB of the second measure-

ment is then interpreted as the disturbance ηB caused by the first measurement. Mathematically
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Figure 6.7: Measurement-disturbance principle. (a) An approximate measurement A

of the observable A disturbs the subsequent measurement of the incompatible observable B,

thus turning it into a disturbed (or approximate) measurement B. The more accurate the first

measurement is, the more it disturbs the second. (b) The measurement-disturbance scenario

is a special case of the joint-measurement scenario, where the approximate measurement B is

actually a disturbed measurement of the ideal observable B.

this identification requires the disturbed observable B to have the same spectrum as the ideal

observable B (e.g. if B is ±1-valued, then B must be too).

The non-optimal relations (6.7) and (6.8) are not affected by this restriction and can equally

be formulated for the measurement-disturbance case with εB = ηB, see Fig. 6.8. Branciard’s

relation, on the other hand quantifies the optimal trade-off, which is typically achieved with

approximate observables that do not have the same spectrum as the ideal observables. Hence,

Branciard’s relation is in general stronger (i.e. more restrictive) in the measurement-disturbance

case than in the joint-measurement case [24]. In particular in the case of ±1-valued observables

(such that A2=B2=1), when also imposing A2=A2=1 and/or B2=B2=1, relation (6.9) is modified

to [1, 24]:

Eq.(6.9)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

εA→
√

1−(1−ε2
A/2)

2

εB→
√

1−(1−ε2
B/2)

2
, (6.10)

where the replacement is made for the observable(s) on which the same-spectrum assumption

is imposed. As shown in Fig. 6.8, this relation also imposes an upper bound on the inaccuracy

and disturbance for the observables that are assumed to satisfy the same-spectrum assumption.

6.3 Measuring Measurement Uncertainty

Although Heisenberg discussed several examples that would fall into the joint-measurement

and measurement-disturbance scenarios, he mostly focused on the properties of the post-

measurement quantum state, rather than the measurement. Kennard in deriving the famous

preparation uncertainty relation concluded that measurement uncertainty cannot be isolated

from uncertainty of the state, since the experimenter does not have access to a “real” value of

the measured observable to compare against [3]. This has led to the long-standing belief that

measurement uncertainty relations are experimentally untestable [26].

The game changed when Ozawa proposed an method for experimentally estimating approx-
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Figure 6.8: Measurement-disturbance relations in the εA/ηB-plane. In the case where

the approximate measurement of A disturbs a subsequent measurement of B, measurement-

disturbance relations illustrate the forbidden regions in the εA/ηB-plane, here shown for two

orthogonal, projective qubit measurements and a pure state that is orthogonal to both, see

Fig. 6.11. Values below either curve are not allowed by the respective uncertainty relation. The

naive Arthurs-Kelly relation (6.7) (dashed line, top-right) and Ozawa’s universally valid rela-

tion (6.8) (dashed line, bottom-left) are the same as in the joint-measurement case of Fig. 6.6.

As a consequence of the same spectrum assumption Branciard’s measurement-disturbance re-

lation (6.9) (solid, green) is stricter than the corresponding joint-measurement uncertainty

relation (solid, blue), and also imposes an upper bound on the disturbance. Branciard’s rela-

tion is tight for pure states and quantifies the optimal trade-off between the inaccuracies of A

and the disturbance imposed on B.

imation errors—the three-state method [27]. This method results directly from a decomposition

of εA, see Sec. 6.3.2, and is reminiscent of measurement tomography where εA is estimated from

the measurement statistics ofM on the states ρ, AρA and (1+A)ρ(1+A)/∥ · ∥, and similarly for

εB. As in the case of quantum tomography, the three-state method relies on exact preparation

of the additional states, and the estimates will thus be somewhat confounded by preparation

errors.

This requirement for exact state-preparation can be avoided using the conceptually very

different weak measurement method [28], where the state is subject to a weak pre-measurement

of A or B before the approximating measurementM. The inaccuracy εA is then estimated from

the joint statistics ofM and the pre-measurement of A, and similarly for B. While this method

might be conceptually more appealing than the three-state method, since all measurements are

performed on the state ρ, the weak measurement necessarily disturbs the state. This method

can thus only hope to satisfy Eq. (6.9) in the limit of vanishing measurement-strength of the

pre-measurement.

The rest of this section is devoted to formalizing these methods in a way that they are

robust to experimental imperfections, which will be somewhat technical. The general idea is
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Figure 6.9: Conceptual idea of determining joint-measurement accuracy. (a) In the

three-state method the approximation error εA is estimated from the measurement statistics

of the approximate joint measurement M on three different quantum states. (b) The weak

measurement method uses a weak pre-measurement of the observable A followed by the approx-

imating measurementM to determine the inaccuracy of the approximation A. The hadamard

gates (dashed) are only needed when measuring A = σx, and are omitted for the weak measure-

ment of B = σz. Note that the state ρ entering the approximate joint-measurement device is

disturbed by the semi-weak measurement and thus partially mixed.

captured by Fig. 6.10 and Eqs. (6.15),(6.16),(6.12).

6.3.1 Relating εA to Experimental Data

Consider the joint approximation of two incompatible ±1-valued, sharp qubit observables

A = a⃗ · σ⃗ and B = b⃗ · σ⃗ on a single-qubit state ρ. The measurement apparatus used for this

joint approximation is treated as a black box, which acts on qubits and outputs binary val-

ues m = ±1. In full generality, it is a 2-outcome POVM M = {M+,M−}, with elements

M± = 1
2 (1 ± (µ1 + m⃗ · σ⃗)), where µ ∈ R and m⃗ = (mx,my,mz) a vector in the Bloch sphere,

such that ∣µ∣ + ∣∣m⃗∣∣ ≤ 1. We also define the observable

M= M+ −M− = µ1 + m⃗ · σ⃗. (6.11)

The outputs m are used to define the estimates f(m) and g(m) for A and B, respectively.

Generalizing Eq. (6.6) the root-mean-square error εA (and equivalently εB) can be decomposed

as [15, 19, 27]:

ε2
A = ∑m

Tr [(A − f(m)1)Mm (A − f(m)1)ρ]

= 1 +∑m
f(m)2 Tr [Mmρ] − 2∑m

f(m)Re [Tr [MmAρ]] , (6.12)

using A2 = 1 and Tr[A2ρ] = 1 for a ±1-valued observable A and a pure-state ρ. The second

term Tr [Mmρ] is simply the probability of outcome m, which is measured directly. Hence,

estimating the inaccuracy εA comes down to estimating the last term in the expansion (6.12)

from experimental data, which is what the three-state method and the weak-measurement

method were developed for. However, as we will see below, both methods rely on idealized

assumptions, which are not robust against experimental imperfections [1].

In the case where M is a two-outcome measurement we can use the definition of M in
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Eq. (6.11) to define

αM ∶= Re [Tr[MAρ]] = µ ⟨A⟩ρ + m⃗ · a⃗ , (6.13)

such that Re [Tr[M±Aρ]] = 1
2 (⟨A⟩ρ ± αM) (equivalently βM for the approximate/disturbed

measurement B). Equation (6.13) shows, that estimating the term Re [Tr[MmAρ]] can be

reduced to the problem of estimating the unknown parameters µ and m⃗ of the black-box

measurement4.

6.3.2 The Three-State Method

The three-state method is motivated by decomposing the term αM in Eq. (6.13) as [27]

αM = Re [Tr[MAρ]] =
1

2
[Tr [M(1+A)ρ(1+A)] −Tr [MAρA] −Tr [Mρ]]. (6.14)

In other words, αM can be estimated from the expectation values of M on the three states

ρ, AρA and (1+A)ρ(1+A)/∥(1+A)ρ(1+A)∥. This decomposition, however, relies on perfect

state-preparations, and is not robust against experimental imperfections.

The idealized assumptions behind Eq. (6.14) can be avoided by directly estimating the

parameters µ and m⃗ in the definition of αM. Specifically, the expectation value of M on the

state ρ with Bloch-vector ρ⃗ is given by ⟨M⟩ρ = µ + m⃗ · ρ⃗, and similarly for the other two states

ρ1 and ρ2. To be compatible with the experimental observations, (µ, m⃗) must then be in the

set

Sexpρ,ρ1,ρ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(µ, m⃗)

RRRRRRRRRRRRRRRRRRRRRRRRRRR

∣µ∣ + ∣∣m⃗∣∣ ≤ 1 and

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

µ + m⃗ · ρ⃗ = ⟨M⟩
exp
ρ

µ + m⃗ · ρ⃗1 = ⟨M⟩
exp
ρ1

µ + m⃗ · ρ⃗2 = ⟨M⟩
exp
ρ2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6.15)

As illustrated in Fig. 6.10, the first constraint ensures that the measurement is physical (in

particular that the vector m⃗ is within the Bloch sphere), while the latter 3 have the form of

hyperplanes. The values of (µ, m⃗) compatible with this set define bounds on αM,

α
min(max)
M = min(max)

(µ,m⃗)∈Sexpρ,ρ1,ρ2

[µ ⟨A⟩ρ + m⃗ · â ], (6.16)

such that αM∈[αminM , αmaxM ]. Using, for example, Monte Carlo sampling, the experimental un-

certainties on ⟨M⟩
exp
ρ and ρ⃗ can be explicitly taken into account in the set Sexpρ,ρ1,ρ2 . In contrast

to the original three-state method, there are no assumptions on the state preparation, other

than that it is well-characterised such that the constraints on (µ, m⃗) from Eq. (6.15) to be

sharply defined. The choice ρ1 ≃ AρA and ρ2 ≃ (1+A)ρ(1+A)/∥(1+A)ρ(1+A)∥, motivated by

Eq. (6.14), ensures that the range of possible values for αM is small (i.e. αminM ≃ αmaxM ), but

4This could in principle be done using measurement tomography, but as we will see below, the three-state
and weak-measurement methods allow for a more direct and physically meaningful estimation that avoids some
of the practical problems of tomography.
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Figure 6.10: Estimation of αM in the presence of experimental imperfections. The

constraints on (µ, m⃗) defining the set Sexpρ,ρ1,ρ2 can be interpreted as hypersurfaces in four dimen-

sions. In the case where µ = 0 (i.e. where the measurement is unbiased), these can be visualized

as hyperplanes in the (mx,my,mz)-space. The constraint ∣µ∣ + ∥m⃗∥ ≤ 1 ensures that the value

of m⃗ lies within the Bloch-sphere. The red ball at the intersection of the planes indicates the

position of m⃗ in the specific example here (the size of this ball has no significance).

virtually any set of states ρ, ρ1, ρ2 would allow for non-trivial constraints on αM.

Adding a fourth state, such that the set of four states is informationally complete (e.g.

the state ρ′2, used for the estimation of εB) this technique amounts to tomography of the

measurement apparatus. In the presence of experimental imperfections this would in general

require a maximum likelihood approach to ensure the result is physical, which is significantly

more complicated and might also lead to biased estimates, see Chap. 2.

6.3.3 The Weak-Measurement Method

The idea behind the weak measurement method is to actually measure the term αM = Re [Tr[MAρ]]

by identifying it with a so-called weak-valued average [28]. Specifically it is the average of the

product ma over the weak-valued joint probability distribution Pwv
ρ (m,a), which represents

the probability that an initial weak measurement of A yields result a and the final measurement

M on ρ yields outcome m [29], such that

Pwv
ρ (m,a) = Re [Tr[MmΠA

a ρ]] (6.17)

αM = ∑
m,a

maPwv
ρ (m,a). (6.18)

Here ΠA
a denotes the projector corresponding to the eigenvalue a of A (such that A = ΠA

+1 −ΠA
−1

in our case of a dichotomic observable, with a = ±1). Note that weak-valued joint probabilities

can be negative, but are always normalized: ∑m,aP
wv
ρ (m,a) = 1 [29].

Since the weak measurement cannot be infinitely weak in practice, it will disturb the state.

Hence, the state ρ, which enters the measurement apparatus and on which the inaccuracies εA

and εB are defined, must be taken to be the perturbed state after the weak measurement. The
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method itself works for any measurement strength [1, 30]. Increasing the strength, however,

results in a more mixed state ρ, which in turn makes it harder to approach and saturate the

bounds imposed by the measurement uncertainty relations (6.9), and (6.10)

In the present case the joint measurement of A = σx and B = σz is approximated on the

state ρ0 = ∣ + y⟩⟨+y∣. A weak measurement of the system with measurement strength ∣κ∣ is

implemented by coupling the system to a meter qubit in the state ∣κ⟩=
√

1+κ
2 ∣0⟩+

√
1−κ

2 ∣1⟩, with

κ ∈ [−1,1], using a controlled-not gate [31, 32], and subsequently measuring the meter in σz.

This setup natively performs a weak σz-measurement on the system, which can be turned into

a σx-measurement by means of additional Hadamard gates (Uh) on the system before and after

the cnot. The state after the unitary transformation Ua = (Uh ⊗ 1) ·Ucnot · (Uh ⊗ 1) is then

given by

ρA,th12 =Ua · ( ∣ + y⟩⟨+y∣ ⊗ ∣κ⟩⟨κ∣ ) ·U †
a

=
1

4
(1 +

√
1 − κ2 σy ⊗ 1 +

√
1 − κ2 1⊗ σx + σy ⊗ σx + κσx ⊗ σz − κσz ⊗ σy), (6.19)

with subscripts 1 and 2 denoting system and ancillary qubit, respectively, while the superscript

“th” indicates that these are ideal, theoretical states. After the interaction, the first qubit is in

the state

ρA,th1 = Tr2 ρ
A,th
12 =

1

2
(1 +

√
1 − κ2σy). (6.20)

The projective σz-measurement of the ancilla with initial state ∣κ⟩, after the interaction Ua

effectively amounts to performing a POVM with elements Tr2[(U
†
a · (1⊗1±σz

2 ) ·Ua) · (1⊗∣κ⟩⟨κ∣)] =
1±κσx

2 , which is a weak measurement of A = σx on the first qubit. Recalling thatM= µ1+m⃗ · σ⃗,

the joint expectation value of this weak measurement and the final strong measurement of M

on the state ρA,th12 of Eq. (6.19) is thus given by

⟨M⊗ σz⟩ρA,th12
= κmx. (6.21)

Similarly, for a weak pre-measurement of B using Ub = Ucnot the state of the first qubit after

the interaction is

ρB,th1 = Tr2 ρ
B,th
12 =

1

2
(1 +

√
1 − κ2 σy) = ρ

A,th
1 . (6.22)

The projective σz-measurement of the second qubit of ρB,th12 (with outcome b=±1) effectively

implements a POVM {1±κσz2 }—a weak measurement of B=σz—on the first qubit, such that the

joint expectation value with M is given by

⟨M⊗ σz⟩ρB,th12
= κmz. (6.23)

For A = σx, and B = σz, using (6.11) (with ⟨A⟩ρth = ⟨B⟩ρth = 0), together with (6.21) and (6.23),
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implies

αM =mx =
⟨M⊗ σz⟩ρA,th12

κ
, (6.24)

βM =mz =
⟨M⊗ σz⟩ρB,th12

κ
. (6.25)

Hence, the values αM and βM can in principle be estimated directly from the experimentally

accessible quantities ⟨M⊗ σz⟩ρA,th12
and ⟨M⊗ σz⟩ρB,th12

. In practice, however, the state prepara-

tion and the 2-qubit interactions will necessarily be imperfect, resulting in approximate states

ρA12 ≃ ρ
A,th
12 and ρB12 ≃ ρ

B,th
12 . These imperfect states—provided they are carefully characterized—

can nevertheless be used to restrict the possible values of αM and βM to small intervals, in a

manner similar to that used in the three-state method above. Furthermore, ρA1 and ρB1 (with

ρ
A/B
1 =Tr2 ρ

A/B
12 ) will in practice be slightly different. Therefore the state ρ—on which the joint

measurement of A and B is approximated, and which enters the definition of the inaccuracies

εA and εB, of αM and βM, and of ⟨A⟩ρ and ⟨B⟩ρ in particular—should be taken to be the

average state ρ = 1
2(ρ

A
1 + ρ

B
1 ).

The value of αM can now be bounded using the experimentally accessible expectation values

⟨M⊗ σz⟩
exp

ρA12
, and ⟨M⊗ 1⟩

exp

ρA12
= ⟨M⟩

exp

ρA1
. Specifically

⟨M⊗ 1⟩ρA12
= µ + m⃗ · ρ⃗A1 (6.26a)

⟨M⊗ σz⟩ρA12
= µρA,1z12 + m⃗ · ρ⃗A, · z12 (6.26b)

with ρA,1z12 = ⟨1⊗ σz⟩ρA12

and ρ⃗A, · z12 = (⟨σx⊗σz⟩ρA12
, ⟨σy⊗σz⟩ρA12

, ⟨σz⊗σz⟩ρA12
),

To be compatible with the experimental observations, (µ, m⃗) must therefore be in the set

T exp
ρA12

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(µ, m⃗)

RRRRRRRRRRRRRRRRRRRRR

∣µ∣ + ∣∣m⃗∣∣ ≤ 1 and

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

µρA,1z12 + m⃗·ρ⃗A, · z12 = ⟨M⊗σz⟩
exp

ρA12

µ + m⃗ · ρ⃗A1 = ⟨M⟩
exp

ρA1

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

which implies that αM ∈ [αminM , αmaxM ] with

α
min(max)
M = min(max)

(µ,m⃗)∈T exp
ρA
12

[µ ⟨A⟩ρ + m⃗ · â ]. (6.27)

As with the three-state method, careful characterization of the state ρA12 is essential for the

constraints on (µ, m⃗), describing the set T exp
ρA12

in (6.27) to be sharply defined. An analogous

analysis applies to βM, using the state ρB12.

Since the set (6.27) is defined by only two hyperplane constraints, rather than three as

in the case of the three-state method, the bounds are expected to be relatively weak. The
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constraints can, however, be strengthened significantly by taking into account experimental

data from both the weak measurements of A and B instead of treating them separately. The

measurement parameters (µ, m⃗) are then, for both εA and εB, estimated from the set

T exp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(µ, m⃗)

RRRRRRRRRRRRRRRRRRRRRRRRRRR

∣µ∣ + ∣∣m⃗∣∣ ≤ 1 and

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

µρA,1z12 + m⃗·ρ⃗A, · z12 = ⟨M⊗σz⟩
exp

ρA12

µρB,1z12 + m⃗·ρ⃗B, · z12 = ⟨M⊗σz⟩
exp

ρB12

µ + m⃗ · ρ⃗ = ⟨M⟩
exp
ρ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6.28)

6.3.4 Inaccuracies from αM

Once αM has been bounded to some interval [αminM , αmaxM ], Eq. (6.12) can be used to estimate

εM. For this, however, it is also necessary to specify the approximating function f(m). This

is what distinguishes the joint-measurement from the measurement-disturbance case, since

the latter restricts the approximating function for B to have the same spectrum as the ideal

observable.

With the Same-Spectrum Assumption

In the case where the same-spectrum assumption is imposed the values of f(m) are constrained

to eigenvalues of the ideal observable, here f(m) = ±1. Hence f is either constant, such that

f(+1) = f(−1) = ±1, or balanced, such that f(+1) = −f(−1) = τ , with τ = ±1. Eq. (6.12) then

reduces to

f constant → ε2
A = 2 ∓ 2 ⟨A⟩ρ

f balanced → ε2
A = 2 − 2 τ αM

In the case where f is constant, ε2
A is independent of M and the role of f as a useful approx-

imation is rather questionable. In the balanced case, the bounds on αM directly and linearly

transform into bounds on εA, such that

(ε
min(max)
A )2 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 − 2α
max(min)
M if τ = +1

2 + 2α
min(max)
M if τ = −1 .

(6.29)
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Without the Same-Spectrum Assumption

If the same-spectrum assumption is not imposed f can be an arbitrary real-valued function.

Substituting the definition of αM into Eq. (6.12) implies

(ε
min(max)
A )2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +∑
m

f(m)2 Tr [Mmρ] − ⟨A⟩ρ∑
m

f(m)

− [f(+1) − f(−1)]α
max(min)
M

if f(+1) − f(−1) ≥ 0

1 +∑
m

f(m)2 Tr [Mmρ] − ⟨A⟩ρ∑
m

f(m)

− [f(+1) − f(−1)]α
max(min)
M

if f(+1) − f(−1) ≤ 0 .

(6.30)

The output values f(m) are then chosen to minimize the inaccuracy εA for each fixed configu-

ration of the measurement apparatus (i.e. each fixed M) [15, 19]

fopt(m = ±1) =
Re [Tr[M±Aρ]]

Tr[M±ρ]
=

⟨A⟩ρ ± αM

2 Tr[M±ρ]
. (6.31)

However, if αM is not known precisely, but only bounded by αminM and αmaxM , it is not possible

to unambiguously define f(m)=fopt(m). Instead, the range of possible values for εA can be

optimized by defining either f(+1)=
⟨A⟩ρ+αminM
2 Tr[M+ρ] or f(+1)=

⟨A⟩ρ+αmaxM
2 Tr[M+ρ] , and either f(−1)=

⟨A⟩ρ−αminM
2 Tr[M−ρ]

or f(−1)=
⟨A⟩ρ−αmaxM
2 Tr[M−ρ] , whichever combination yields the smallest range of possible values for εA

from (6.30).

6.4 Testing Joint-Measurement Uncertainty Relations

6.4.1 Experimental Configuration

To test the joint-measurement uncertainty relation (6.9) and measurement-disturbance rela-

tion (6.10) experimentally, we use polarization-encoded qubit to approximate the joint measure-

ment of the incompatible observables A = σx and B = σz on the state ∣y+⟩⟨y + ∣ = (1 + σy) /2. In

this configuration ρ,A,B are all mutually orthogonal, which in the ideal case implies C2
AB=1. In

the case of the weak measurement method with a semi-weak measurement of strength 0 < ∣κ∣ < 1,

the actual state is perturbed to ρ = (1 +
√

1 − κ2σy) /2, such that C2
AB=1−κ2. In either case,

the measurement apparatus that performs the joint approximation of A and B is chosen to

implement a projective measurement M = cos θσz + sin θσx onto a direction in the xz-plane

of the Bloch sphere, see Fig. 6.11. The outputs m = ±1 of the measurement M are used to

compute approximations f(m) and g(m) for A and B, respectively. In the case where the

same spectrum assumption is imposed, these values are restricted to ±1, otherwise they can be

optimized to minimize the inaccuracies εA and εB.
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Figure 6.11: Illustration of the experimental configuration. (a) The joint measurement

of A = σx and B = σz is approximated on the state ρ = (1 + σy) /2, shown in red on the Bloch-

sphere. Since A,B and ρ are all pairwise orthogonal the measurements are non-commuting and

maximally incompatible on ρ. M is a projective measurement in the xz-plane of the Bloch-

sphere, providing joint approximations A and B (visualization highly simplified) for A and B,

respectively. (b) Treated as a black box, the measurement deviceM performs an approximate

joint-measurement of A and B. (c) Experimentally, the measurement M is implemented as

a actual measurement of B after a half-waveplate (which encodes information about A). The

half-waveplate rotation encodes information about A in the final measurement, while disturbing

the measurement of B. In the case where B is taken to be the disturbed measurement this

corresponds to the measurement-disturbance scenario.

6.4.2 Three-State Method

Recall that the three-state method—in the experimentally robust variant introduced in Sec. 6.3.2—

allows the inaccuracies εA, and εB to be constrained to small intervals, using the measurement

statistics ofM on three different quantum states. In practice, ρ ≃ ∣+y⟩⟨+y∣, and the other states

are chosen as ρ1 ≃ AρA ≃ BρB ≃ ∣−y⟩⟨−y∣ and ρ2 ≃ (1 +A)ρ(1 +A)/∥ · ∥ ≃ ∣+x⟩⟨+x∣ (respectively

ρ′2 ≃ (1+B)ρ(1+B)/∥ · ∥ ≃ ∣+z⟩⟨+z∣), which is motivated by the original three-state method and

tends to produce the strongest constraints on (εA, εB). The experimental setup that implements

these preparations and measurements is shown in Fig. 6.12.

Using well-characterized state preparations, the weak measurement method produces sharply

defined intervals of compatible values for the inaccuracies εA and εB, shown in Fig. 6.13. It is

crucial to note that these intervals are not error regions around a point estimator. Instead the

method produces intervals of possible values that are all equally compatible with the experi-

mental data5. The effect of statistical errors from the Poissonian counting statistics is to smear

out the boundaries, as indicated in Fig. 6.13b. Hence, although there are “error-bars” on the

boundary values of each interval, the method will always produce finite intervals.

5In order to obtain a point estimate the method must be modified to resemble measurement tomography
(using an informationally complete set of states), which, however, would require sophisticated methods to
contend with statistical uncertainties and biased estimators, see Chap. 2.
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Figure 6.12: Experimental setup for the three-state method. (a) Conceptually, in

the three state method the measurement inaccuracy εA of the approximate measurement A

is estimated from the measurement statistics of M on the three quantum states ρ, ρ1, ρ2 (or

ρ, ρ1, ρ′2 for εB). (b) In the experiment, quantum states are prepared on single photons at

a wavelength of λ=820nm from a triggered spontaneous parametric down-conversion (SPDC)

source, using a Glan-Taylor polarizer (GT), a quarter- and a half-waveplate (QWP, HWP). A

HWP and a polarizer implement the measurement M. The additional QWP between these

elements is used for state tomography, with avalanche photodiodes (APD) used for detection.

As a consequence of the state-dependence of relation (6.9), and (6.10) the bounds they

impose are sensitive to the state ρ on which the joint measurement is approximated. In the case

presented here, ρ was prepared with a fidelity of F = 0.999172(7) and purity of P = 0.99917(2).

The decreased purity implies that the relations are not exactly tight anymore, which can in

principle be fixed with slightly modified inequalities [24]. More importantly, however, the

incompatibility parameter CAB is sensitive to imperfections in the state (not just impurity).

The used state here achieved C2
AB = 0.99669(3), which becomes visible as a small correction of

the bound in Fig. 6.13 (solid line), away from the optimal trade-off (dot-dashed line) for the

ideal case C2
AB = 1.

6.4.3 Weak-Measurement Method

Recall that the weak-measurement method—in the experimentally robust variant introduced

in Sec. 6.3.3—allows the inaccuracies εA, and εB to be constrained to small intervals, using the

joint statistics of a semi-weak pre-measurement A and B, respectively, and a final measurement

of M. In practice this is achieved using a non-deterministic controlled-not (Cnot) gate [33],

as discussed in Sec. 6.3.3, and shown in Fig. 6.14

The averaged disturbed state after the weak measurement with an average value of κ =

−0.262(4) had a reduced purity of P=0.964(1) (and fidelity of F=0.99998(6)). This corresponds

to C2
AB=0.928(2), which results in a significant deviation of the bounds imposed by relation (6.9)

and (6.10) from the ideal case, see Fig. 6.15. Moreover, the imperfect process fidelity of the

cnot gate of Fp=0.964(1) results in larger systematic errors, which appear as displacements

of the estimated intervals away from the optimal trade-off. Moreover, Eq. (6.26) becomes

increasingly sensitive to experimental imperfections as the measurement strength ∣κ∣ decreases,

which forces a trade-off between small intervals and tight uncertainty bounds.

The intervals obtained from the weak-measurement method are significantly larger than

those obtained from the three-state method. One of the two main reasons for this is that the
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Figure 6.13: Measurement inaccuracies εA and εB estimated using the three-state

method. (a) The blue rectangles represent the intervals of compatible values of εA and εB

without the same-spectrum assumption. The solid blue curve corresponds to the bound im-

posed by relation (6.9), for the experimental values of ∆A,∆B and CAB; the values below

this bound are forbidden by quantum theory. The dot-dashed blue line is the bound imposed

by (6.9) for the ideal case ∆A = ∆B = CAB = 1. The green rectangles and curves represent

the corresponding data when the same-spectrum assumption is imposed on both A and B,

now invoking relation (6.10), which also upper -bounds the values of εA and εB. For compar-

ison, the black dashed curves indicate the bounds imposed by the suboptimal Arthurs-Kelly

relation (6.7)—which is violated by our data—and by Ozawa’s relation (6.8)—which is indeed

satisfied, but cannot be saturated. The shown intervals include 1σ statistical errors due to

Poissonian photon-counting statistics. (b) The blue-shaded region corresponds to the intervals

for (εA, εB) including 1σ statistical uncertainties. The solid purple line represents the size of

the interval without taking into account statistical uncertainty.

count-rates have to be kept low to avoid errors from higher-order emissions of the downcon-

version source. As a consequence statistical uncertainty significantly contributes to the size of

the intervals for (εA, εB), as shown in Fig. 6.15. Secondly, the weak measurement method only

imposes two constraints on the set of possible values of the measurement parameters that are

used to estimate (εA, εB). This naturally leads to weaker constraints and thus larger intervals

than in the case of the three-state method, which provides three constraints. If, however, in-

stead of treating them separately, one takes into account the experimental data from both the

weak measurement of A and of B, then the size of the obtained intervals can be significantly

reduced. The corresponding smaller intervals, shown as dark rectangles in Fig. 6.15, are then

typically dominated by statistical errors.
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Figure 6.14: Experimental setup for the weak-measurement method. (a) Conceptu-

ally, in the weak-measurement method the inaccuracy εA of the approximate measurement A

is estimated from the joint statistics of a weak pre-measurement of A, and the strong approx-

imating measurement M. (b) Experimentally, the weak measurement is implemented using

a non-deterministic controlled-not gate with an appropriately chosen meter qubit, which is

subsequently measured in σz. The state ρ after the weak measurement (slighly mixed) is then

subjected to the strong measurement M, implemented as in Fig. 6.12.
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Figure 6.15: Measurement inaccuracies, εA vs. εB estimated using the weak-

measurement method. (a) The results are presented as in Fig. 6.13. The darker rectangles

represent the smaller intervals of compatible values that can be obtained by using the data

from both semi-weak measurements. Due to the reduced purity of the input state ρ on which

the joint measurement is approximated the bounds imposed by the relations (6.9), and (6.10)

for the experimental values of ∆A,∆B and CAB (solid lines) deviate significantly from the ideal

bounds (dot-dashed lines). (b) Contribution of statistical errors to the size of the intervals, as

in Fig. 6.13b. In contrast to the three-state method, the intervals are dominated by statistical

errors.

6.5 Discussion and Outlook

Although the alleged violations of “Heisenberg’s uncertainty relation” [34–37] ultimately turned

out to be perfectly compatible with the uncertainty principle, they highlighted that it is far

from a solved problem. The experimental demonstration that the Arthurs-Kelly reformulation
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of the famous Robertson relation cannot be used to quantify joint-measurement uncertainty

has lead to a lot of debate and disagreement. Much of the confusion in fact can be traced back

to the exact definitions of measurement inaccuracy and disturbance used by various authors

and the different problems that are addressed [5, 15, 17, 19, 38–40].

Specifically, one might be interested in quantifying the worst-case performance of a joint-

measurement device for two incompatible observables over all possible quantum states. In

this case a state-independent uncertainty relation would be desirable. However, for any fixed

quantum state it is in general possible to do much better than this state-independent bound.

Branciard’s joint-measurement relation (6.9) and measurement-disturbance relation (6.10) ad-

dress the latter problem. For pure states they quantify the optimal trade-off between the

inaccuracies of the approximate measurements A and B and thus describe exactly what is and

what is not possible in quantum mechanics. In the case of mixed states these relation are not

tight anymore, but there are ways to generalize them appropriately [20, 24].

Curiously, the recent discussion about the measurement uncertainty principle revealed that

the problem of preparation uncertainty was not completely solved either. As pointed out in

Ref [5], the Robertson relation provides a state-dependent lower bound, which often provides

only a rather weak constraint, and can even vanish, although both uncertainties are non-zero.

Moreover, the state-dependence itself means that A,B and ρ must be specified to evaluate the

relation, which leaves no freedom for ∆A and ∆B. Hence, such a state-dependent relation

cannot be used to answer questions about the optimal trade-off between the uncertainties of A

and B for any quantum state. In the case of state-dependent measurement uncertainty relations

this is not the case, since εA and εB depend on the measurement device as well, and not only on

A,B and ρ. For qubits (or more generally finite-dimensional systems) geometric arguments are

very powerful for finding uncertainty relations, and have already been used to fully characterize

preparation uncertainty for qubits. For the joint-measurement and measurement-disturbance

case some progress has been made [40], but the general state-independent case is still open [14,

40].

Quantum information theory inspired an alternative approach to uncertainty relations based

on bounding the information content of a measurement, quantified by the entropy. This has the

interesting operational interpretation in the sense that the more predictable the results of one

observable are, the more random must the results of another, incompatible observable be. In

the preparation uncertainty scenario, the relations of Ref. [5] directly translate into tight state-

independent entropic uncertainty relations. For joint measurements this approach has recently

been used to derive both state-independent [41] and state-dependent [42, 43] entropic joint-

measurement uncertainty relations. It would be interesting to study the connections between

Ozawa’s mean errors and the entropic approach in more detail.
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CHAPTER 7

Conclusion and Outlook

T
he work presented in this thesis addresses some of the key foundational questions on the

path towards a better understanding of quantum mechanics. In summary, we have pre-

sented an experiment that rules out interpretations of quantum mechanics which consider the

wavefunction as purely a representation of incomplete knowledge of an underlying objective

reality. We have demonstrated the experimental application of causal modelling techniques to

quantum correlations, showing that not even nonlocal causal influences from one measurement

outcome to the other can explain quantum correlations. Finally, we have experimentally stud-

ied a largely overlooked aspect of Heisenberg’s uncertainty principle, namely the constraints it

imposes on the joint measurement of two incompatible observables. All three aspects are cur-

rently very active fields of research in both theory and experiment and contribute significantly

to our understanding of the physical content of quantum mechanics. Beyond the central scope

of the thesis we present three additional works in the appendix, which investigate the limits of

quantum theory. The first focuses on an experimental simulation of super-quantum correlations

and information causality as a candidate principle for defining the boundary between quantum

mechanics and more powerful theories. Introducing relativistic quantum information, we have

simulated a model of closed timelike curves, giving insight into how quantum systems may

behave under extreme gravitational conditions. Finally, we have introduced and demonstrated

a method for preparing non-Gaussian states of motion of a macroscopic mechanical oscillator,

which will be a key ingredient in future tests of the limits of quantum mechanics in the macro-

scopic regime. In the following we will discuss in more detail the main results, their relevance

and connection, as well as interesting directions for future research.

The nature of the quantum wavefunction is the central issue in the debate over the interpre-

tation of quantum mechanics, which is almost as old as the theory itself. While probably

everyone working in quantum mechanics though about this question at some point, it was

generally considered a topic of philosophical interest with no practical impact and not open to

empirical exploration. This changed with the development of the ontological models framework

that formalized the problem in mathematical rigour and enabled to the seminal PBR theorem.

This, and many subsequent results showed that interpretations wherein the wavefunction is

a representation of incomplete knowledge of an underlying reality are untenable because they

cannot reproduce one of the crucial features of quantum theory, the imperfect distinguishability

of non-orthogonal quantum states. This strong result, however, only holds under additional
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assumptions on the structure of the ontic state space. In chapter 4 we present an experiment

that follows a different path, inspired by the PBR result. Without making additional assump-

tions, one cannot completely rule out realist ψ-epistemic models, but can still constrain their

explanatory power. Specifically we showed that such models can at most explain ∼ 70% of the

quantum overlap observed in the experiment, which required the preparation and measurement

of four-dimensional quantum systems with unprecedented accuracy.

Our results demonstrate that the epistemic overlap is insufficient for explaining explain

quantum indistinguishable, yet it remains unclear whether it plays any role at all. A common

feature of all known experimental protocols is that they establish more stringent bounds on the

overlap ratio only as the amount of quantum overlap goes to zero. In other words the closer we

are to showing that a ψ-epistemic model cannot explain anything, the less there is to explain.

It is an important open question whether similar bounds can be achieved with a fixed inner

product. Experimentally, imposing more stringent bounds on the overlap ratio will require

improvements in the preparation and measurement precision for higher-dimensional quantum

systems. Finally, for practical reasons our current results rely on a fair sampling assumption

and repeating the experiment in an architecture which achieves the required (almost perfect)

detection efficiency will allow to also test unfair-sampled maximally ψ-epistemic models.

One of the most important implications of ruling out maximally ψ-epistemic models, how-

ever, is that it demonstrates that the discussion about interpretations of quantum mechanics

is open to empirical exploration. This opens the route towards tests of other interpretations,

which can be roughly grouped into ψ-ontic models (within or outside the ontological mod-

els framework), operational interpretations, and more exotic ontologies. The class of ψ-ontic

interpretations hosts many popular candidates such as many-worlds and Bohmian Mechan-

ics. A few of these, most notably, collapse models, are actually alternative theories which are

known to make predictions that differ from quantum mechanics and will be tested with fu-

ture macroscopic experiments, such as the optomechanical system discussed in Appendix C.

More generally, there are arguments against larger classes of realist [1] and single-world [2]

interpretations, based on heating due to information erasure and self-consistency, respectively.

However, also these results hinge on a number of questionable assumptions. With regards to

operational interpretations the experimental prospects are largely unknown, but gedanken ex-

periments such as that of Wigner’s friend can go a long way to studying these interpretations.

In the end, it is quite likely that a consistent interpretation of quantum mechanics will feature

aspects of a range of the current interpretations [3]

The study of ontological models (or hidden variable models) actually has a much longer history

than the ontological models framework. It was the work of John Bell, which showed that these

models can indeed be constrained experimentally, which initiated half a century of “experi-

mental metaphysics” [4], culminating in a series of loophole-free Bell-inequality violations in

2015 [5–7]. Today Bell-inequality violations are at the heart of device-independent entangle-

ment verification and, in principle, unbreakable quantum cryptography, which highlights their
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practical importance beyond the metaphysics. These applications, of course came long after

Bell, who was concerned with the causal structure of quantum mechanics. This is a central

aspect for realist interpretations, which, in contrast to operational interpretations, are actually

trying to explain observed correlations.

Roughly speaking, Bell-inequality violations show that quantum correlations cannot be

explained in terms of classical cause-and-effect relations under the assumption of relativistic

causality. In chapter 5 we discuss how the mathematical theory of causal modeling provides

a natural framework for the study of non-classical correlations. Within this framework we

introduce a decomposition of Bell’s local causality assumption into the causally motivated

assumptions of causal parameter independence and causal outcome independence. We then

show experimentally that giving up causal outcome independence, i.e. allowing for a causal

influence from one measurement outcome to the other, is not enough to explain the observed

correlations causally. Since causal models are formulated without reference to a background

spacetime, the tested causal influence could be sub- or super-luminal, or even to the past,

as long as it does not create causal loops. These results rule out a large class of nonlocal

causal models of which Bell’s models are a special case and highlight the strength of the causal

modeling approach for a systematic study of the various assumptions behind causal explanations

of quantum correlations. It would be interesting to apply similar methods to other scenarios

and relaxations of other causal assumptions to study the causal structure of quantum mechanics

in more detail.

Another interesting aspect of our result is that the considered set of joint probability distri-

butions is only bounded by non-trivial Bell-type inequalities in a scenario with three settings

and two outcomes. This suggests that setting information is more important to simulating

quantum correlations and could in the standard two-setting, two-outcome case be encoded in

the measurement outcome. It would be interesting to study this feature in more complicated

scenarios and in cases with a very large number of settings and outcomes. However, this leads

to an exponential growth of the dimension of the corresponding probability polytopes, which

makes their study intractable with standard methods. Finally, all causal model that can re-

produce Bell correlations must be fine-tuned in the sense that the causal parameters must be

chosen carefully such that whatever causal link the model adds compared to Bell-local models

does not lead to superluminal signaling [8]. This brings in an interesting alternative perspec-

tive, and although not every fine-tuned model is unstable, this suggests that we might have to

reconsider our notion of causality in the quantum world.

Besides reality and causality, one of the most fundamental aspects of quantum mechanics is

Heisenberg’s uncertainty principle, which provides physical meaning to the notion of incompat-

ible observables. It is well-known that no quantum state can simultaneously have arbitrarily

well-defined position and momentum. Contrary to common belief, however, Heisenberg’s un-

certainty principle encompasses much more than that and, in fact, contains three distinct

statements about nature. These, respectively, quantify how well two incompatible observables
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can be prepared on a quantum system, how well they can be jointly measured, and how much

a measurement of one disturbs the measurement of the other. Heisenberg himself has not

quantified any of these principles and until about a decade ago only preparation uncertainty

had a quantitative uncertainty relation, although it was often incorrectly used for the other two

cases. In chapter 6 we present the first experimental test of tight joint-measurement uncertainty

relations derived in Ref. [9]. These relations quantify the optimal tradeoff in measurement ac-

curacy for the joint approximation of two incompatible observables on a quantum state. The

measurement-disturbance case is in fact closely related and quantified by similar relations re-

lations, and in both cases we achieved close-to saturation of these bounds using high-precision

photonics. Practically, understanding the optimal error-tradeoff is crucial for developing high-

precision joint measurements, or can be exploited for trading off accuracy in one measurement

for uncertainty in another.

Curiously, despite its fundamental and practical importance, the quantitative aspect of

Heisenberg’s uncertainty principle is still poorly understood, and even worse, is often treated

as a solved problem. In fact, only the preparation uncertainty principle has received consider-

able attention and has been quantified by a state-dependent relation. However, such relations

are only meaningful in restricted cases, as pointed out in Ref. [10], who provided preparation

uncertainty relations for the general case. In the measurement-uncertainty case the situation is

a bit more difficult, and both, state-dependent, and state-independent relations are meaningful,

but for different purposes. State-dependent relations, tested here, quantify the optimal tradeoff

in measurement accuracy for a given quantum state, while state-independent relations would

quantify the worst-case performance of a measurement device. A general family of uncertainty

relations that is optimal for the latter case is still an open problem. Experimentally, it would

be interesting to perform a detailed analysis of state-independent preparation uncertainty re-

lations and also compare the state-dependent and state-independent cases in the measurement

uncertainty scenario.

The work included in Appendices A-C go beyond fundamental questions within quantum me-

chanics and explore the boundaries of the theory. Despite all their success in their respective

regimes, our current two major physical theories, quantum mechanics and general relativity, are

fundamentally incompatible and can thus not be the end of the story. A good understanding

not only of the physical content of quantum theory, but also of its limits will be key in the

development of a theory that bridges the gap and possibly supersedes quantum mechanics and

relativity.

One of the curious features in this respect is that quantum correlations, despite being

stronger than any classical correlations, are not as strong as relativity would permit. Moreover,

there are theories with stronger correlations than quantum mechanics that are still consistent

with relativity and display many features that are considered characteristic for quantum me-

chanics. In Sec. 3.2.4 and Appendix A we demonstrate how non-unitary effects, specifically

polarization-dependent loss, can lead to apparent correlations that violate the CHSH inequal-
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ity beyond the quantum bound. We use these simulated correlations to study information

causality, which is a promising candidate for a physical principle to recover quantum correla-

tions. Information causality strengthens signal locality and implies that the information that

Bob can gain about an unknown to him data set of Alice, should be limited to the amount of

information communicated to him by Alice. This principle can explain the strength of quan-

tum correlations in a number of scenarios, but not always. Exploring this and other physical

principles, or a combination thereof further would be of great interest for building quantum

theory on a framework of physical principles, rather than mathematical axioms.

In Appendix B we simulate the behaviour or a quantum system that traverses a closed time-

like curve and thus effectively travels back in time to interact with itself. Such closed timelike

curves are puzzling phenomena that appear to be compatible with the equations of general

relativity under extreme conditions. In the classical case these are usually disregarded because

the lead to paradoxes. However, in the quantum case these paradoxes are resolved due to the

larger state-space, which, in particular, allows for mixed states. We simulate the behaviour

of a quantum system in such a situation, revealing effects such as perfect distinguishability of

quantum states and nonlinear evolution. Curiously the latter phenomenon makes it possible to

distinguish between proper mixtures of quantum states, where different pure states are com-

bined to a mixed state, and improper mixtures, where part of a higher-dimensional system is

traced out, although in standard quantum mechanics there is no observable difference between

the two. Exploring the behaviour of quantum systems under such extreme conditions can pro-

vide important clues to where quantum mechanics clashes with relativity, which is one of the

key challenges of modern physics.

Finally, an important open question is how large one can make a system before quantum

mechanics breaks down. On the one hand, quantum theory should be universal and apply

to any physical system, on the other hand quantum effects are not observed at the everyday,

macroscopic scale. A prominent suggestion is that quantum mechanics is in fact just a linear

approximation to an alternative theory, which features a stochastic “collapse” term in the

Schrödinger evolution. Such theories are compatible with all present observations, but imply

that quantum superposition states of macroscopic objects cannot be maintained over extended

periods of time. A very promising platform to test such theories is the emerging field of

optomechanics, which studies the behaviour of mechanical resonators, interfaced through single

photons. However, this field has for a long time been facing two major roadblocks. The

mechanical systems must be cooled very close to their motional ground state, and the interaction

with the photons must be very strong. In Appendix C we develop and demonstrate a novel

technique for preparing quantum states of motion of a mechanical resonator, which sidesteps

these major challenges. Inspired by the KLM scheme for preparing non-classical states of light

using measurement induced nonlinearities, our method relies on photon counting in an optical

interferometer of photons reflected from the mechanical resonator. We showed theoretically that

this method produces non-classical states with arbitrary low single-photon coupling strength

and for arbitrary thermal occupation of the system (although could systems work better, of
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course). We demonstrate one of the main features of the method, that it generates interference

fringes in the position quadrature distribution, on a mechanical resonator in a thermal regime.

This method opens a feasible route for tests of collapse models of quantum mechanics and the

exploration of macroscopic quantum phenomena.

Quantum mechanics is our most successful physical theory, yet we do not understand what

it says about the physical world. In this thesis I have aimed to make significant contribu-

tions to developing such a physical understanding. My work demonstrates that the quantum

wavefunction, the central object of the theory, cannot be interpreted as a representation of

imperfect knowledge about an underlying reality. This is part of a decade-old problem that

was long believed to not be open for empirical tests. I explored the causal structure of quan-

tum mechanics, generalizing Bell’s seminal theorem to rule out a large class of nonlocal causal

models and pave the way for further exploration of quantum causality in more complicated

scenarios. This can have important implications for public-outcome quantum cryptography

schemes. I have also studied the role of quantum uncertainty, despite being widely regarded

a solved problem, has many more facets expected. The measurement uncertainty principle is

crucial for high-precision joint measurements and quantum metrology. Finally, my results push

the boundaries of quantum mechanics by exploring the behaviour of quantum systems under

extreme relativistic conditions, post-quantum theories and demonstrating the first generation

of interference in the position quadrature distribution of a macroscopic mechanical resonator.

These contributions address a range of key questions within quantum foundations and set a

number of directions for future research towards a better understanding of our best physical

theory.
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Quantum correlations can be stronger than anything achieved by classical systems, yet they are
not reaching the limit imposed by relativity. The principle of information causality offers a possible
explanation for why the world is quantum and why there appear to be no even stronger correlations.
Generalizing the no-signaling condition it suggests that the amount of accessible information must
not be larger than the amount of transmitted information. Here we study this principle experi-
mentally in the classical, quantum and post-quantum regimes. We simulate correlations that are
stronger than allowed by quantum mechanics by exploiting the effect of polarization-dependent loss
in a photonic Bell-test experiment. Our method also applies to other fundamental principles and
our results highlight the special importance of anisotropic regions of the no-signalling polytope in
the study of fundamental principles.

I. INTRODUCTION

Quantum mechanics is one in a large class of theories
which are consistent with relativity in the sense that they
do not allow signals to be sent faster than the speed of
light. Many of these theories exhibit strong non-local
correlations between distant particles that cannot be ex-
plained by the properties of the individual particles alone.
Surprisingly, quantum mechanics is not the most non-
local among them, which raises the question about the
physical principle that singles out quantum mechanics
and sets the limit on the possible strength of correlations
in nature.

Here we experimentally address this fundamental ques-
tion by testing the principle of information causality in
the classical, quantum and post-quantum regime. While
the no-signaling principle limits the speed with which
distant parties can communicate, information causality
states that the accessible information cannot be more
than the information content of a communicated mes-
sage, no matter what other shared resources are used.
Both classical and quantum mechanics satisfy this prin-
ciple, while it is violated by most post-quantum theo-
ries [1].

We experimentally emulate correlations of various
strengths from classical to almost maximally non-local
and demonstrate a violation of the principle of infor-
mation causality in the case where the simulated cor-
relations are beyond the quantum regime. Apparent
super-quantum correlations are, in our approach, a con-
sequence of the non-unitary evolution of quantum states
when subjected to polarization-dependent loss with post-
selection [2]. For moderate loss, we find that initially en-
tangled states can result in super-quantum correlations,
while unentangled states still appear classical. For higher
loss on the other hand we observe super-quantum corre-
lations even for classical input states.

II. THEORETICAL FRAMEWORK

No-signaling resources can formally be treated as pairs
of black boxes shared between arbitrarily separated Alice
and Bob [3], see Fig. 1a). Each box has a single input
and output and the correlation between them is only re-
stricted by the no-signaling principle. This means that
the local outcome only depends on the local input, such
that Alice cannot learn anything about Bob’s input from
only her output.

A typical quantum example of such a resource is a
pair of entangled particles, shared between Alice and
Bob, where inputs correspond to measurement settings
and outputs to measurement outcomes. Since the
work of John Bell—and numerous subsequent confirm-
ing experiments—it is now widely accepted that these
particles exhibit non-local correlations, which have no
classical explanation. Under the no-signaling constraint
alone, however, there are even stronger non-local corre-
lations than quantum entanglement [4]. The maximum
that is compatible with relativity is achieved by the so-
called Popescu-Rohrlich (PR)-box [4], characterized by
perfect correlations of the form A ⊕ B = ab, between
Alice’s and Bob’s inputs a and b and outputs A and B,
respectively. Here ⊕ denotes addition modulo 2, equiva-
lent to the logical XOR, where A ⊕ B = 0 when A = B
and 1 otherwise.

A convenient operational way of quantifying non-
locality is the Clauser-Horne-Shimony-Holt (CHSH) in-
equality [5]. This experimentally testable reformulation
of Bell’s inequality is satisfied by any correlation that
can be described by a local hidden variable model. Such
models are a description of correlations that can arise
in classical systems, but cannot describe non-local cor-
relations obtained from e.g. entangled quantum states.
Written in terms of correlations of the form A⊕B = ab
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the inequality takes the form

S =

1∑

a=0

1∑

b=0

P (A⊕B = ab | a, b) ≤ 3. (1)

Here P (A⊕B = ab | a, b) denotes the probability for ob-
taining outputs A,B, which satisfy A⊕B = ab given the
inputs a for Alice and b for Bob. While this inequality is
satisfied by any classical correlations, it can be violated in
the quantum case. This violation, however, is bounded to
a value of 2+

√
2 ≈ 3.41, known as Tsirelson’s bound [6].

Note, that inequality (1) is presented here in a slightly
different form than conventionally [5], where the classi-

cal bound is 2 and Tsirelson’s bound is 2
√

2. They are,
however, linearly related and the difference is a simple
rescaling of S.

Despite being a simple consequence of the mathemat-
ical formalism of quantum mechanics, it is unclear what
the physical motivation is for this seemingly sub-optimal
limit on the strength of quantum correlations. In fact
even the algebraic maximum S = 4 can be achieved (by
the PR-box) without violating the no-signaling principle.

III. THE PRINCIPLE OF INFORMATION
CAUSALITY

This principle is physically motivated by the fact that,
according to special relativity, faster-than-light informa-
tion transfer would allow information to be sent back-
wards in time and thus violate causality. Nevertheless,
it does not explain why super-quantum correlations such
as the PR-box are incompatible with quantum mechan-
ics and seem not to exist in nature. A possible explana-
tion is offered by the principle of information causality—
a generalization of no-signaling—which states that there
cannot be more information available than was transmit-
ted [7].

This can be understood on the basis of the following
elementary information-theoretic protocol: Bob tries to
gain information from a set of data that is only known
to Alice. The parties are allowed to use an arbitrary
amount of shared no-signaling resources, but may not
communicate more than m classical bits. In this case, the
information causality principle states that the amount of
information accessible to Bob should be limited to m
classical bits [7].

In the simplest instance, Alice has a set of two bits
{a0, a1} and Bob wants to guess one of them, which we
denote ab [8], see Fig. 1a). Alice and Bob then input
a0 ⊕ a1 and b into their respective black box and obtain
outputs A and B. From this output Alice computes an
m = 1-bit message M = A ⊕ a0 and sends it to Bob,
who calculates his guess for Alice’s bit as G = M ⊕B =
a0 ⊕ A ⊕ B. In the case of a shared PR-box, Bob can
guess either one of Alice’s bits perfectly, since in that
case A⊕B = ab and thus G = a0 ⊕ b(a0 ⊕ a1).

b

Alice Bob

Alice’s message

L

Bob’s guess

R

L1

L2

L0 R1

R2

R0

Alice Bob

a

FIG. 1. Illustration of the information causality proto-
col. a) A general no-signaling resource is given by a space-like
separated (indicated by the dashed line) pair of black boxes
producing local outputs A and B for Alice and Bob, when
they input a and b, respectively. In the case of a PR-box the
outputs of the left (L) and right (R) box would be perfectly
correlated according to A⊕B = ab. The inputs and outputs
depicted here correspond to the simplest instance of the in-
formation causality protocol. b) Example of the multilevel
information causality protocol for n = 2. Alice has a list of
N bits ai and Bob tries to guess the bit a3 (shown in bold,
red) using N−1=3 pairs of shared black boxes on n=2 levels
(corresponding boxes labeled L0/R0, L1/R1, L2/R2). Bob’s
inputs bi and choice of boxes are determined by the binary
decomposition b =

∑n−1
k=0 bk2k. From his outputs B1, B2 and

Alice’s 1-bit message M Bob computes a final guess G for Al-
ice’s bit ab. Note that Bob only needs to use one box on each
level and ignores the outputs of all the other boxes. Hence, his
input to these boxes can be arbitrary and in the experiment
we chose to use the same input for all boxes on one level.

In the more general case considered here, Alice has a
dataset {a0, . . . , aN−1} of N = 2n bits and Bob wants to

guess the bit with index b =
∑n−1
k=0 bk2k. As discussed in

Ref. [7], Alice and Bob can achieve this task by using a
nested version of the protocol outlined above, with N−1
black boxes on n levels and 1 bit of classical communica-
tion.

The protocol is illustrated in Fig. 1b) for the case
n = 2. From every output Alice computes a temporary
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message Mk,i, where k denotes the level and i the num-
ber of the box on that level. Since she is only allowed
1 bit of communication, she uses these temporary mes-
sages as the inputs for the boxes on the next-lower level
and only sends the final message to Bob. Depending on
bn Bob then decodes either Mn−1,1 or Mn−1,2 and then
moves on to the next-higher level until he reaches the bit
of interest.

Bob’s success can then be quantified by

I =
N−1∑

k=0

I(ak : G | b = k), (2)

where I(ak : G | b = k) is the Shannon mutual informa-
tion between the k’th bit of Alice’s list and Bob’s guess
for it [7]. This quantity can further be bounded as

I ≥
N−1∑

k=0

1− h(Pk), (3)

where h(Pk) is the binary entropy of the success proba-
bility Pk for guessing the k’th bit.

IV. EXPERIMENTAL IMPLEMENTATION

Experimentally, we generate apparent super-quantum
correlations based on the effect of polarization-dependent
loss in a post-selected Bell-test experiment [2], see
Fig. 2a). We use photon pairs created from a continuous-
wave pumped spontaneous parametric down-conversion
source in a polarization Sagnac design [9, 10], as illus-
trated in Fig. 2b). Using this approach we obtain pho-
ton pairs with very high efficiency and in a continuously
tunable fashion that enables us to produce any bipartite
quantum state [11].

In particular, we used the maximally entangled state
|ψ+〉 = (|H〉|V 〉+ |V 〉|H〉) /

√
2 as the initial state, where

|H/V 〉 represent horizontal and vertical polarization, re-
spectively. For comparison, we also considered the corre-
sponding fully decohered and thus separable state ρsep =
(|HV 〉〈HV |+ |V H〉〈V H|) /2. This state was produced
as a mixture of the two pure state components |HV 〉 and
|V H〉 by probabilistically mixing the respective coinci-
dence counts.

The initial state is then subjected to polarization-
dependent loss, introduced to the system by means of a
Jamin-Lebedev polarization-interferometer, which allows
individual control of the degree of loss for each polariza-
tion mode for both Alice and Bob, see Fig. 2c). In the
symmetric case considered here the loss was parametrized
by a single parameter κ, where κ=0 corresponds to the
loss-free scenario and κ=1 means complete loss of one
polarization. With this setup we simulated correlations
of increasing strength, ranging from classical to quantum
and close to maximal non-signaling as discussed in detail
in the methods section.
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Bob

FIG. 2. The experimental approach. a) Pairs of sin-
gle photons are created at the source and are subjected to
polarization-dependent loss before Alice and Bob perform
their measurements. b) The photon-source used in the ex-
periment is spontaneous parametric down-conversion in a
10 mm long periodically poled KTiOPO4 (ppKTP) crystal
inside a polarization Sagnac interferometer using a grating
stabilized continuous wave pump laser (L) at a wavelength
of λ = 410 nm. By controlling the phase and polarization
of this laser and adjusting the additional half-wave-plate in
Bob’s arm of the source, HWP3, any two-qubit states can
be produced. c) Polarization-dependent loss is introduced
to the system in a controllable way using an interferometer
based on calcite beam displacers (BD), which split the hori-
zontal and vertical polarization components into two spatial
modes. The two HWPs in the interferometer are set to ro-
tate the polarization by 90◦, which ensures equal path-length
of the two spatial modes upon recombination at the second
set of BD. The degree of loss for each polarization is then
proportional to the offset of the corresponding HWP from
this setting. Finally, a series of quarter-wave plates (QWP),
HWP and polarizing beam splitter (PBS) is used to perform
the Bell measurements. Note: additional polarizers may be
introduced before the interferometer to produce high quality
separable states.

Using these correlations we investigated the informa-
tion causality protocol on up to four levels (corresponding
to a 16-bit data-set for Alice) with 1-bit of communica-
tion. Crucially, we implemented the protocol in Fig. 1b)
on a shot-by-shot basis, rather than estimating the per-
formance from coincidence probabilities. For this we used
an AIT-TTM8000 time-tagging module with a temporal
resolution of 82 ps to register the single photon counts
for all possible outcomes. From this data, using passive
feed-forward, i.e. at the processing stage, we were able to
reconstruct over 105 individual trials of the protocol for
each of the 21 settings of uniformly increasing κ.

V. RESULTS

At a correlation strength of S=3.874(5), the informa-
tion available to Bob is at least I≥1.86(2) bits, despite
only receiving 1 bit from Alice. For four nesting lev-
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els of the protocol we establish lower bounds as high as
I≥7.47(11) bit, which violates the information causality
inequality I ≤ 1 by almost 60 standard deviations. Sim-
ilarly for weaker correlations, Bob has more information
available than contained in Alice’s message for all nest-
ing levels as soon as the correlation strength surpasses
S ≈ 3.5. The fact that this value is significantly higher
than Tsirelson’s bound of Sq ≈ 3.41 emphasizes that the
quantity I only recovers this bound in the asymptotic
limit n→∞.

IIn the following we therefore consider an alternative
figure of merit, motivated by identifying the protocol in
Fig. 1b) as a special case of a so-called random access
code [12]. Using similar ideas as in Ref. [7], the efficiency
of this task can be bounded by

η =

N−1∑

k=0

(2Pk − 1)2 ≤ 1, (4)

which thus also encompasses the principle of information
causality [12]. This bound, however, can indeed be sat-
urated by quantum states for any size of Alice’s dataset,
as illustrated in Fig. 3. Note that our data violates the
bound before the correlations surpass Tsirelson’s bound.
This is a result of a slight anisotropy in the simulated
correlations due to experimental imperfections and a re-
sulting bias for certain data-sets. It is not present when
considering isotropic correlations, see Fig. 3b). Crucially,
this highlights the dependence of both figures of merit (3)
and (4) to the specific random choice of Alice’s data-set.

In particular, the separable state used in the simula-
tion produces entanglement-like correlations for one mea-
surement choice of Alice and uncorrelated outputs for
the other, see Fig. S1. Hence, depending on the choice
of data-set the figures of merit η and I might resem-
ble the behavior expected for an entangled state, for a
completely mixed state or, for higher nesting level, any-
thing in-between. Only when averaging over all possible
datasets, {ai}, for a given level or employing the “depo-
larization” protocol introduced in Ref. [13] to make the
correlations isotropic without changing the CHSH value,
can the quantities (3) and (4) be used as reliable fig-
ures of merit, see Fig. S1 and S2. Note, however, that
anisotropic super-quantum correlations (averaged over
all datasets) do not necessary violate Tsirelson’s bound.
In this case the principle of information causality can-
not be probed using the depolarization approach, since
it would result in isotropic correlations and information
causality would not be violated.

VI. DISCUSSION

In contrast to the full set of no-signaling correlations,
and the set of classical correlations, which both have the
form of a well-characterized polytope, much less is known
about the quantum set [3, 14]. Understanding the set
of quantum correlations theoretically and characterizing
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FIG. 3. Experimental results for the efficiency in the
information causality protocol. a) Shown is the effi-
ciency of the protocol for increasing strength of correlation,
see methods section. The data points represent n = 1 (blue
circles), n = 2 (red squares), n = 3 (yellow diamonds) and
n = 4 (green triangles) levels in the protocol, where at each
level a random dataset {ai} was used. Error-bars represent
the standard deviation of 5 individual runs of every protocol.
The lines correspond to theoretical expectations for the given
correlation strength. b) A zoom into the region where our
data violates Tsirelson’s bound (indicated by the grey, verti-
cal line). Our data violates the bound of η≤1 already before
the correlation strength surpasses Tsirelson’s bound, which is
a result of a finite sample size and the particular choice of
random dataset, see Sec SI. In the right panel, the same plot
for isotropic correlations obtained from using the protocol of
Ref. [13] shows very good agreement with the theoretical pre-
dictions.

it experimentally should thus be a primary aim from a
practical as well as a fundamental perspective. Infor-
mation causality, which has been proposed as a physical
principle to reconstruct the set of quantum correlations,
has already proven successful in recovering the famous
Tsirelson bound. This limit of quantum correlations,
however, is only one extremal point on the continuous
boundary and there exist correlations below it, which
nevertheless do not admit a quantum description [1]. In-
formation causality also rules out such correlations for
some 2-dimensional slices of the full (8-dimensional) no-
signaling polytope, while it does not for other slices [1].
This shortcoming, nevertheless is not definite and might
just be a result of a suboptimal protocol in Fig. 1b).

A violation of information causality would in particu-
lar imply that the tested theory does not admit a suit-
able measure of one of the most elementary information
theoretic quantities: entropy [12, 15]. Such a measure
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is assumed to be consistent with the classical limit and
such that the entropy change ∆H of a composite system
XY satisfies ∆H(XY ) ≥ ∆H(X) + ∆H(Y ) under local
evolution of the subsystems X and Y . Hence, a failure of
these requirements could be interpreted as allowing for
the generation of non-local correlations via local transfor-
mations. Similar consequences might also arise from the
violation of alternatives to information causality, which
are more or less successful in recovering part of the quan-
tum boundary. Examples include the principles of local
orthogonality [16], the requirement that the theory has
a suitable classical limit [17] or that certain communica-
tion [18–20] or computational tasks [21] are non-trivial.

Our method of simulating super-quantum correlations
could be adapted to explore some of these alternative
principles as well. Of particular interest, however, would
be a test of information causality in the multipartite
case, since most of the above principles are formulated
in the bipartite setting, which is bound to fail in recov-
ering the full quantum boundary due to the existence of
multipartite super-quantum correlations, which obey ev-
ery bipartite principle [22, 23]. While there are studies
of information causality for higher-dimensional systems,
which strengthen its position as a physical principle that
determines quantum correlations [24], a suitable general-
ization to the multipartite case is still an open problem.

As highlighted by our experiment, special focus has to
be put on anisotropic regions of the no-signaling poly-
tope. Specifically we find that the introduced figures
of merit are not valid in a single instance of the pro-
tocol and have to be averaged over all possible datasets
or estimated from the depolarized, isotropic data. This
subtle, but very important detail is clearly highlighted
by our experimental results, where we show how even a
small amount of imbalance can result in a violation of
the principle by quantum states for a specific choice of
parameters, while obeying the principle on average.

VII. METHODS

Examining the results of a CHSH-inequality test make
it clear where our data crosses the boundary of the quan-
tum set. In our investigation we focused on the scenario
of a fixed maximally entangled state |ψ+〉 in situations
with different amounts of loss, as shown in Fig. 4. We
further considered the state ρsep, which resembles the
state |ψ+〉 after full decoherence as might happen dur-
ing propagation between Alice and Bob. This allows for
an intuitive comparison between the entangled and un-
entangled case.

The tested inequality has the form of a CHSH-
inequality with measurements in the yz-plane of the
Bloch sphere. For the lossless case κ = 0, Alice’s and
Bob’s measurements can be viewed as the application of
appropriate basis-rotations (around the x-axis) followed
by projective measurements in the |H/V 〉-basis. These
rotations can also be seen as phase-gates in the diag-

onal polarization basis |±〉 = 1√
2
(|H〉 ± |V 〉). In the

case where polarization dependent loss is present, these
phase-gates become non-unitary. They act as the iden-
tity on the state |u〉 =

(√
1 + κ |H〉+

√
1− κ |V 〉

)
/
√

2
and impose a phase on the non-orthogonal state |w〉 =(√

1 + κ |H〉−
√

1− κ |V 〉
)
/
√

2, where κ = 〈u|w〉. The
precise relation between κ and the degree of loss is dis-
cussed in Ref. [2]. As non-unitary operations can only be
performed non-deterministically, postselection on success
is required, which results in the observation of apparent
super-quantum correlations. Finally, we use the first step
of the depolarization procedure in Ref. [13] to symmetrize
the simulated correlations, while preserving their possible
anisotropy.

Curiously, we note that moderate polarization-
dependent loss can lead to super-quantum correlations
for entangled states without invalidating the CHSH in-
equality for separable states, as suggested in Ref. [2].
This observation even holds when optimizing the sepa-
rable state for maximal CHSH-value, for each degree of
loss [2]. Note, however, that these results were obtained
using the same measurements for both separable and en-
tangled states, whereas arbitrary hidden variable theories
would allow arbitrary measurements.
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FIG. 4. Experimental results. Shown are the experimen-
tally obtained values for the CHSH-parameter S for both the
entangled state |ψ+〉 (blue circles) and the separable state
ρsep (red squares), together with the theoretical predictions
(blue and red lines, respectively) for these states, versus the
amount of polarization-dependent loss as parametrized by κ.
The gray dashed line represents the theoretical expectation
for the optimal separable state for a given amount of loss. In
the experiment we observe a violation of Tsirelson’s bound
for κ ≥ 0.3. Interestingly, we identify a region (0.3≤κ≤0.372)
where the quantum bound of the inequality is violated, while
the classical bound still holds for all separable states. With
the chosen, fixed, separable state ρsep we observe a first vio-
lation at κ = 0.5. Errors from a Monte-Carlo sampling of the
Poissonian counting statistics are not visible on the scale of
this plot.

Figure 4 illustrates the obtained values of the CHSH
parameter S and compares them to the ideal case, which,
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for the initially entangled state, is described by

S|ψ+〉(κ) = 3
κ2 − cos Θ

2

2(1− κ2 cos Θ
2 )
− κ2 − cos 3Θ

2

2(1− κ2 cos 3Θ
2 )

+2. (5)

Here Θ is a function of κ, which can be analytically
approximated by Θ=π(17+ cos(πκ))/12, as discussed in
Ref. [2].

We experimentally violate Tsirelson’s bound by more
than 7 standard deviations, S=3.423(1) at a loss param-
eter of κ=0.3. At this point, the achieved value for the
unentangled state, S=2.821(2), is indeed well below the
classical bound of 3 and even the optimal unentangled
state does not violate the inequality until κ ≈ 0.37. In the
region 0.3 ≤ κ ≤ 0.37 it is therefore possible to exploit
super-quantum correlations from entangled states while
unentangled states still appear classical. With increas-
ing loss, both states eventually violate Tsirelson’s bound
and approach the numerical maximum of S = 4, with
experimental values of S = 3.9341(6) and S = 3.929(2)
for the entangled and separable state, respectively. The
increasing deviation from the theoretical predictions in
Fig. 4 is a result of the decreasing signal-to-noise ratio in
the single-photon detectors for high-loss settings.

Related experiments have observed apparent violations

of Tsirelson’s bound as a consequence of explicit viola-
tions of the detection loophole [25] or the fair-sampling
assumption [26]. The latter is in fact typically violated
if the quantum system of interest has more (possibly)
correlated degrees of freedom than those tested in the
Bell-inequality [27]. Violation of Tsirelson’s bound has
also been considered as an intermediate step in deriving
three-qubit inequalities [28].
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Supplemental Material

Here we discuss in more detail the subtleties of the
information causality protocol for individual choices of
the data-set for Alice. In particular we will discuss the
effect of anisotropic correlations of decohered entangled
states and present results for the case where these are
transformed to isotropic correlations by incorporating the
protocol proposed in Ref. [13] into our experiment.

SI. SEPARABLE STATE CORRELATIONS AND
THE CHOICE OF DATA-SET

As discussed previously, the experiment was performed
for both entangled and separable initial states. While the
entangled state allows for generation of super-quantum
correlations in the range 3.379(1) ≤ S ≤ 3.9341(6), the
separable state covers a larger range of 2.698(2) ≤ S ≤
3.929(2). This range in particular includes a large part
of the set of classical (S ≤ 3) and quantum correlations
(S ≤ 3.41). Here it is important to reiterate the form
of the used state. Since it has been chosen as the fully
decohered version of |ψ+〉 it still retains correlations of
the same strength in one basis, while correlations in any
orthogonal basis are lost—a classically correlated state.

00 01 10 11
00 0.25 0.25 0.25 0.25
01 0.25 0.25 0.25 0.25
10 0.43 0.07 0.07 0.43
11 0.07 0.43 0.43 0.07

00 01 10 11
00 0.43 0.07 0.07 0.43
01 0.43 0.07 0.07 0.43
10 0.43 0.07 0.07 0.43
11 0.07 0.43 0.43 0.07

Outputs: AB

In
pu

ts
: a

b

Outputs: AB

In
pu

ts
: a

b

ba

FIG. S1. Measurement probabilities for the lossless
case κ = 0. Shown are the theoretically expected measure-
ment probabilities for both the a) entangled and b) separable
state for a lossless Bell-test experiment. Note that the cor-
relations are the same for the two states when Alice chooses
to measure 1, but there are no correlations for the separable
state when she measures 0.

An important consequence of this feature, as discussed
in the main text, is that the success probability in the in-
formation causality protocol then depends on the specific
choice of data-set for Alice. As an example consider the
simplest instance, where Alice has two bits a0 and a1. Al-
ice uses a0⊕a1 as her input and Bob uses b ∈ {0, 1}. The
probability of success in this scenario will be the same
as for the entangled state whenever a0 ⊕ a1 = 1 (that
is for the data-sets {0, 1} and {1, 0}) and the same as
for random guessing (1/2) in the other two cases, where
a0⊕ a1 = 0. Although Ref. [7] discussed the related case
where the probability of success may depend on Bob’s
choice, the feature revealed here has important practical
implications, since the calculation of the figures of merit
always requires to consider all of Bob’s possible choices,
while only one data-set for Alice has to be considered.
Depending on the choice of data-set, any degree of effi-

ciency can be achieved with classical states.

There are several ways to circumvent these problems.
Clearly, averaging over all possible data-sets will recover
the performance expected from the CHSH-value corre-
sponding to the respective state. However, as the possible
choices for Alice’s data-set grow doubly-exponentially,
this approach is typically unfeasible, in particular when
testing the protocol on a shot-by-shot basis. Here we
employed the “depolarization” protocol introduced by
Ref. [13], which takes any set of correlations to an
isotropic one without changing the CHSH-value, using 3
bits of shared randomness. The drawback of this method,
however, is that it precludes a test of information causal-
ity in the anisotropic regime of super-quantum correla-
tions below Tsirelson’s bound, see Ref. [1].

SII. RESULTS FOR ISOTROPIC
CORRELATIONS

Figure S2 shows the experimental lower bounds on the
mutual information measure I for the isotropic correla-
tions obtained from the depolarization protocol applied
to the initially separable state. Figure S3 shows the ran-
dom access code efficiency η for the same data. In both
cases we observe excellent agreement with the theoretical
predictions.
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FIG. S2. Experimental results for the mutual informa-
tion gain in the information causality protocol. Shown
is the lower bound on the mutual information gain in the
protocol for increasing strength of isotropic correlation. The
data points represent n = 1 (blue circles), n = 2 (red squares),
n = 3 (yellow diamonds) and n = 4 (green triangles) levels
in the protocol, where at each level a random dataset {ai}
was used. Error-bars represent the standard deviation of 5
individual runs of every protocol. The lines correspond to
theoretical expectations for the given correlation strength.
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FIG. S3. Experimental results for the efficiency in the
information causality protocol. Shown is the efficiency of
the protocol for increasing strength of isotropic correlation.
The data points represent n = 1 (blue circles), n = 2 (red
squares), n = 3 (yellow diamonds) and n = 4 (green triangles)
levels in the protocol, where at each level a random dataset
{ai} was used. Error-bars represent the standard deviation
of 5 individual runs of every protocol. The lines correspond
to theoretical expectations for the given correlation strength.
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Experimental Simulation of Closed Timelike Curves
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Closed timelike curves are among the most controversial features of modern physics. As legitimate
solutions to Einstein’s field equations, they allow for time travel, which instinctively seems para-
doxical. However, in the quantum regime these paradoxes can be resolved leaving closed timelike
curves consistent with relativity. The study of these systems therefore provides valuable insight into
non-linearities and the emergence of causal structures in quantum mechanics—essential for any for-
mulation of a quantum theory of gravity. Here we experimentally simulate the non-linear behaviour
of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating
effects that arise in systems traversing a closed timelike curve. These include perfect discrimination
of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways
of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial
qubit state, the form of the unitary interaction, and the influence of decoherence.

INTRODUCTION

One aspect of general relativity that has long intrigued
physicists is the relative ease with which one can find so-
lutions to Einstein’s field equations that contain closed
timelike curves (CTCs)—causal loops in space-time that
return to the same point in space and time [1–3].
Driven by apparent inconsistencies—like the grandfa-
ther paradox—there have been numerous efforts, such as
Novikov’s self-consistency principle [4] to reconcile them
or Hawking’s chronology protection conjecture [5], to dis-
prove the existence of CTCs. While none of these clas-
sical hypotheses could be verified so far, the situation
is particularly interesting in the quantum realm. In his
seminal 1991 paper Deutsch showed for quantum sys-
tems traversing CTCs there always exist unique solu-
tions, which do not allow superluminal signalling [6, 7].
Quantum mechanics therefore allows for causality viola-
tion without paradoxes whilst remaining consistent with
relativity.

Advances in the field of Deutsch CTCs have shown
some very surprising and counter-intuitive results, such
as the solution of NP-complete problems in polynomial
time [8], unambiguous discrimination of any set of non-
orthogonal states [9], perfect universal quantum state
cloning [10, 11] and the violation of Heisenberg’s uncer-
tainty principle [12]. The extraordinary claims of what
one could achieve given access to a quantum system
traversing a CTC have been disputed in the literature,
with critics pointing out apparent inconsistencies in the
theory such as the information paradox or the linearity
trap [13, 14]. However, it has been shown that the theory
can be formulated in such a way that these inconsisten-
cies are resolved [7, 15].

∗Electronic address: ringbauer.martin@gmail.com

Modern experimental quantum simulation allows one
to ask meaningful questions that provide insights into the
behaviour of complex quantum systems. Initial results
have been obtained in various areas of quantum mechan-
ics [16–18] and in particular in the field of relativistic
quantum information [19–23]. This recent experimental
success, coupled with the growing interest for the study of
non-linear extensions to quantum mechanics, motivates
the question of whether the fundamentally non-linear dy-
namics and the unique behaviour arising from CTCs can
be simulated experimentally.

In this article we use photonic systems to simulate the
quantum evolution through a Deutsch CTC. We demon-
strate how the CTC-traversing qubit adapts to changes
in the input state |ψ〉, and unitary interaction U to en-
sure physical consistency according to Deutsch’s consis-
tency relation [6]. We observe non-linear evolution in
the circuit suggested by Bacon [8] and enhanced distin-
guishability of two non-orthogonal states after the action
of an optimised version of a circuit proposed by Brun et
al. [9]. Using the self-consistent formulation of Ref. [7] we
then move beyond the simplest implementations and find
a striking difference in the behaviour of the system for
direct as opposed to entanglement-assisted state prepa-
ration. Finally, we explore the system’s sensitivity to
decoherence.

U U

FIG. 1: Model of a quantum state |ψ〉 interacting with
an older version of itself. This situation can equivalently
be interpreted as a chronology-respecting qubit interacting
with a qubit trapped in a CTC. The CTC in general consists
of a causal worldline with its past and future ends connected
via a wormhole (indicated by black triangles).
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RESULTS

The Deutsch model. While there has been some recent
success on alternative models of CTCs based on postse-
lection [23–25], we focus on the most prominent model for
describing quantum mechanics in the presence of CTCs,
introduced by Deutsch [6]. Here a quantum state |ψ〉 in-
teracts unitarily with an older version of itself, Fig. 1.
With the inclusion of an additional swap gate, this can
equivalently be treated as a two-qubit system, where a
chronology-respecting qubit interacts with a qubit ρctc
trapped in a closed timelike curve. The quantum state
of ρctc in this picture is determined by Deutsch’s consis-
tency relation:

ρctc = Tr1
[
U ′ (|ψ〉〈ψ| ⊗ ρctc)U ′†

]
, (1)

where U ′ is the unitary U followed by a swap gate,
Fig. 1. This condition ensures physical consistency—in
the sense that the quantum state may not change inside
the wormhole—and gives rise to the non-linear evolution
of the quantum state |ψ〉. The state after this evolution is
consequently given by ρout= Tr2

[
U ′ (|ψ〉〈ψ| ⊗ ρctc)U ′†

]
.

The illustration in Fig. 1 further shows that the require-
ment of physical consistency forces ρctc to adapt in-
stantly to any changes in the surroundings, such as a
different interaction unitary U or input state |ψ〉. While
Eq. (1) is formulated in terms of a pure input state |ψ〉
it can be directly generalised to mixed inputs [7].

Simulating CTCs. Our experimental simulation of a
qubit in the (pure) state |ψ〉 traversing a CTC relies on
the circuit diagram shown in Fig. 2a). A combination of
single qubit unitary gates before and after a controlled-
Z gate allows for the implementation of a large set of
controlled-unitary gates U . Using polarisation-encoded
single photons, arbitrary single qubit unitaries can be re-
alised using a combination of quarter-wave (QWP) and
half-wave plates (HWP); additional swap gates before
or after U are implemented as a physical mode-swap.
The controlled-Z gate is based on non-classical (Hong-
Ou-Mandel) interference of two single photons at a single
partially polarising beam-splitter (PPBS) that has differ-
ent transmittivities ηV =1/3 for vertical (V) and ηH=1
for horizontal (H) polarisation [26]—a more detailed de-
scription of the implementation of the gate can be found
in Ref. [27]. Conditioned on post-selection it induces a π
phase-shift when the two interfering single-photon modes
are vertically polarised, such that |V V 〉 → −|V V 〉 with
respect to all other input states.

One of the key features of a CTC is the inherently
non-linear evolution that a quantum state |ψ〉 undergoes
when traversing it. This is a result of Deutsch’s consis-
tency relation, which makes ρctc dependent on the input
state |ψ〉. In order to simulate this non-linear behav-
ior using linear quantum mechanics we make use of the

effective non-linearity obtained from feeding extra infor-
mation into the system. In our case we use the classical
information about the preparation of the state |ψ〉 and
the unitary U to prepare the CTC qubit in the appro-
priate state ρCTC as required by the consistency relation
Eq. (1). After the evolution we perform full quantum
state tomography on the CTC qubit in order to verify
that the consistency relation is satisfied.

Key:
PBS QWP HWPPPBS FC APD CTC

c)

a) b)
-1 +1 (i)

(ii)

U

FIG. 2: Experimental details. a) The circuit diagram for
a general unitary interaction U between the state |ψ〉 and the
CTC system. b) The specific choice of unitary in the demon-
stration of the (i) non-linear evolution and (ii) perfect dis-
crimination of non-orthogonal states. c) Experimental setup
for case (ii). Two single photons, generated via spontaneous
parametric down-conversion in a nonlinear β-barium-borate
crystal, are coupled into two optical fibres (FC) and injected
into the optical circuit. Arbitrary polarisation states are pre-
pared using a Glan-Taylor polariser (POL), a quarter-wave
(QWP) and a half wave-plate (HWP). Non-classical interfer-
ence occurs at the central partially-polarising beam-splitter
(PPBS) with reflectivities ηH=0 and ηV =2/3. Two avalanche
photo-diodes (APD) detect the single photons at the outputs.
The states |ψ〉 are chosen in the xz-plane of the Bloch sphere,
parametrised by φ and CUxz is the corresponding controlled
unitary, characterised by the angle θxz. The swap gate was
realized via relabeling of the input modes.

Non-linear evolution. As a first experiment we inves-
tigate the non-linearity by considering a Deutsch CTC
with a cnot interaction followed by a swap gate as il-
lustrated in Fig. 2b)(i). This circuit is well-known for the
specific form of non-linear evolution:

α|H〉+ eiϕβ|V 〉 → (α4 + β4)|H〉〈H|+ 2α2β2|V 〉〈V |, (2)

which has been shown to have important implications
for complexity theory, allowing for the solution of NP-
complete problems with polynomial resources [8]. Ac-
cording to Deutsch’s consistency relation, Eq. (1) the
state of the CTC-qubit for this interaction is given by

ρctc = α2|H〉〈H|+ β2|V 〉〈V |. (3)

We investigate the non-linear behaviour experimen-
tally for 14 different quantum states |ψ〉= cos(φ2 )|H〉 +
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eiϕ sin(φ2 )|V 〉, with φ ∈ {0, π4 , π2 , 3π4 , π} and a variety of
phases ϕ ∈ {0, 2π}, where the locally available informa-
tion φ and ϕ is used to prepare ρctc. In standard (linear)
quantum mechanics no unitary evolution can introduce
additional distinguishability between quantum states. To
illustrate the non-linearity in the system we employ two
different distinguishability measures: the trace-distance
D(ρ1, ρ2)= 1

2 Tr[|ρ1 − ρ2|], where |ρ|=
√
ρ†ρ and a single

projective measurement with outcomes “+” and “−”:

L(ρ1, ρ2) = 〈+|ρ1|+〉〈−|ρ2|−〉+ 〈−|ρ1|−〉〈+|ρ2|+〉. (4)

While the metric D is a commonly used distance mea-
sure it does not have an operational interpretation and
requires full quantum state tomography in order to be
calculated experimentally. The measure L in contrast is
easily understood as the probability of obtaining differ-
ent outcomes in minimum-error discrimination of the two
states using a single projective measurement on each sys-
tem. The operational interpretation and significance of
L is discussed in more detail in the section . Both D and
L are calculated between the state |ψ〉 and the fixed ref-
erence state |H〉 after being evolved through the circuit
shown in Fig. 2b)(i). The results are plotted and com-
pared to standard quantum mechanics in Fig. 3. If the
state |ψ〉 is not known then, based only on the knowledge
of the reference state |H〉 and the evolution in Eq. (2) it
is natural and optimal to use the measure L with a σz-
measurement.

We observe enhanced distinguishability for all states
with an initial trace-distance to |H〉 smaller than 1/

√
2

(i.e. φ≤π2 ), as clearly demonstrated by the σz-based mea-
sure, see Fig. 3. Note, however, that this advantage over
standard quantum mechanics is not captured by the met-
ric D(ρ1, ρ2) unless the non-linearity is amplified by iter-
ating the circuit on the respective output at least 3 times,
see inset of Fig. 3. This shows that the non-linearity is
not directly related to the distance between two quan-
tum states. By testing states with various polar angles
for each azimuthal angle on the Bloch sphere, we confirm
that any phase information is erased during the evolution
and that the evolved state ρout is indeed independent of
ϕ, up to experimental error. We further confirm, with an
average quantum state fidelity of F = 0.998(2) between
the input and output state of ρctc in Eq. (3), that the
consistency relation (1) is satisfied for all tested scenar-
ios.

Non-orthogonal state discrimination. While it is
the crucial feature, non-linear state evolution is not
unique to the swap.cnot interaction, but rather a cen-
tral property of all non-trivial CTC interactions. Simi-
lar circuits have been found to allow for perfect distin-
guishability of non-orthogonal quantum states [9], lead-
ing to discomforting possibilities such as breaking of
quantum cryptography [9], perfect cloning of quantum
states [10, 11], and violation of Heisenberg’s uncertainty
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FIG. 3: Non-linear evolution in a Deutsch CTC with
swap.cnot interaction. Both the trace distance D, and
the σz-based distinguishability measure L (equal to within
experimental error in this case) of the evolved states ρout
after the interaction with the CTC are shown as yellow di-
amonds. The blue circles (red squares) represent the measure
D (L) between the input states |ψ〉 and |H〉 in the case of
standard quantum mechanics. Note that due to the phase-
independence of the evolution in Eq. (2) states that only differ
by a phase collapse to a single data point. Crucially, the met-
ric D does not capture the effect of the non-linearity, while L
does, indicated by the red shaded region. Error bars obtained
from a Monte Carlo routine simulating the Poissonian count-
ing statistics are too small to be visible on the scale of this
plot. Inset: The dashed black lines with decreasing thickness
represent theoretical expectations for D and L from 2, 3, 4 and
5 iterations of the circuit.

principle [12]. In particular it has been shown that a
set {|ψj〉}N−1j=0 of N distinct quantum states in a space
of dimension N can be perfectly distinguished using an
N -dimensional CTC-system. The algorithm proposed by
Brun et al. [9] relies on an initial swap operation between
the input and the CTC-system, followed by a series of
N controlled unitary operations, transforming the input
states to an orthogonal set, which can then be distin-
guished.

In our simulation of this effect we consider the qubit
case N=2, which consequently would require two con-
trolled unitary operations between the input state and
the CTC system. We note, however, that without loss
of generality the set of states to be discriminated can be
rotated to the xz-plane of the Bloch sphere, such that
|ψ0〉=|H〉 and |ψ1〉= cos(φ2 )|H〉+ sin(φ2 )|V 〉 for some an-
gle φ. In this case, the first controlled unitary is the
identity operation I, while the second performs a con-
trolled rotation of |ψ1〉 to |V 〉 as illustrated in Fig. 4a).
In detail, the gate CUxz applies a π rotation to the target
qubit conditional on the state of the control qubit, about
an axis in the xz-plane defined by the angle θxz. For
the optimal choice θxz = φ−π

2 the gate rotates the state
|ψ1〉 to |V 〉, orthogonal to |ψ0〉, enabling perfect distin-
guishability by means of a projective σz measurement,
see Fig. 4a).

In practice the gate CUxz is decomposed into a
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controlled-Z gate between appropriate single qubit ro-
tations, defining the axis θxz. The latter are realised by
half-wave plates before and after the PPBS, set to an an-
gle of θxz/4 with respect to their optic axis, see Fig. 2c):

CUxz(θxz) = (I ⊗HWP(θxz/4)) · cz · (I ⊗HWP(θxz/4))

=




1 0 0 0
0 1 0 0
0 0 cos(θxz) sin(θxz)
0 0 sin(θxz) − cos(θxz)


 . (5)

Note that relation (1) requires that ρctc=|H〉〈H|,
whenever the input state is |H〉, independent of the gate
CUxz. Crucially, this consistency relation ensures that
any physical CTC-system adapts instantly to changes in
φ and θxz, parametrising the input state and gate, re-
spectively. In our simulation these two parameters are
used to prepare the corresponding state ρctc, as shown
in Fig. 2c).

In a valid experimental simulation the input and out-
put states ρctc have to match, i.e. ρctc has to satisfy
relation (1). This has been verified for all following
experiments with an average quantum state fidelity of
F=0.996(7).

In the experiment, we prepared near-pure quantum
states directly on single photons using a Glan-Taylor
polariser followed by a combination of a HWP and a
QWP. We simulated CTC-aided perfect discrimination
of non-orthogonal states for 32 distinct quantum states
|ψ1〉 with φ ∈ [0, 2π). For each state we implemented
CUxz with the optimal choice of θxz=

φ−π
2 . Furthermore

we tested the ability of this system to distinguish the
set {|ψ0〉, |ψ1〉} given non-optimal combinations of φ and
θxz. For this we either chose φ=3π/2 and varied the gate
over the full range of θxz ∈ [−π2 , π2 ), or chose CUxz as
a controlled Hadamard (optimal for φ=3π/2) and varied
the state |ψ1〉 over the full range of φ ∈ [0, 2π). The out-
put state is characterized by quantum state tomography,
which provides sufficient data to obtain L for arbitrary
measurement directions as well as for the calculation of
the trace-distance.

Figure 5a) illustrates the observed distinguishability L
for the above experiments and compares it to the expec-
tation from standard quantum mechanics. In the latter
case the measure L is maximized by choosing the opti-
mal projective measurement, based on the available in-
formation about the states |ψ0〉 and |ψ1〉. Crucially, the
optimized L is directly related to the trace-distance D as
L = 1

2 (1 + D2) and therefore captures the same quali-
tative picture, without the requirement for full quantum
state tomography. In the CTC case a σz-measurement
is chosen, which is optimal when θxz = φ−π

2 . Other-
wise further optimization is possible based on the knowl-
edge of θxz (see section and Fig. S1 for more details).
Furthermore, we note that the above scenario can also
be interpreted in a state-identification rather than state-
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FIG. 4: Bloch-sphere evolution of states traversing a
CTC. In the case of (a) local state preparation, the state
|ψ0〉=|H〉 (blue) is unaffected by CUxz, while |ψ1〉 (green)
undergoes a π rotation about the axis defined by θxz. The
axis is chosen as θxz = φ−π

2
such that |ψ1〉 7→ |V 〉 which

can then be perfectly distinguished from |ψ0〉. (b) For non-
local preparation of the initial states and the same choice
of θxz the controlled unitary maps both initial states to the
maximally mixed state 1

2

(
|H〉〈H| + |V 〉〈V |

)
. The probability

of distinguishing the two states is therefore 1/2—as good as
randomly guessing.

discrimination picture, which is discussed in more detail
in section and illustrated in Fig. S2.

Local vs. non-local state preparation. Due to the
inherent non-linearity in our simulated system, care must
be taken when describing mixed input states ρin. In
particular a distinction between proper and improper
mixtures can arise which is unobservable in standard
(linear) quantum mechanics [28]. This ambiguity is re-
solved in Ref. [7] by requiring the consistency condition
to act shot-by-shot—i.e. independently in every run of
the experiment—on the reduced density operator of the
input state. For proper mixtures this means that ρin
is always taken as a pure state, albeit a different one
shot-by-shot. For improper mixtures in contrast, ρin will
always be mixed. A similar, but much more subtle and
fascinating feature, which has received less attention in
the literature so far occurs with respect to preparation of
pure states [29]. While in standard quantum mechanics
a pure state prepared directly (locally) on a single qubit
is equivalent to one that has been prepared non-locally
through space-like separated post-selection of an entan-
gled resource state, this is not true under the influence
of a CTC. The origin of this effect is not the non-linear
evolution, but rather the local absence of classical infor-
mation about the post-selection outcome. The role of
locally available classical information in entanglement-
based preparation schemes is a matter of current debate
and still to be clarified.

A possible resource state for alternatively preparing
|ψ0〉 and |ψ1〉 could be of the form |Ψ〉= 1√

2

(
|0〉 ⊗ |ψ0〉+
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FIG. 5: Experimental results. Probability of state discrimination for a) locally prepared and b) non-locally prepared states
|ψ0〉=|H〉 and |ψ1〉 = cos(φ

2
)|H〉+ sin(φ

2
)|V 〉 as measured by L. The surface represents the theoretically predicted probability

depending on the state and gate parameters φ and θxz, respectively. Solid, red (open, blue) data-points indicate better (worse)
performance than standard quantum mechanics. c) Cross-sectional views of the combined plots a) and b) reveal the rich
structure in the dependencies on the initial parameters for (top) a fixed state (φ=3π/2) and (bottom) a fixed gate (θxz=π/4).
Here red squares (yellow diamonds) correspond to the CTC case with local (non-local) preparation and blue circles represents
standard quantum mechanics. Error bars obtained from a Monte Carlo routine simulating the Poissonian counting statistics
are too small to be visible on the scale of this plot.

|1〉 ⊗ |ψ1〉
)
, where projection of the first qubit onto

the state |0〉 and |1〉 leaves the second qubit in the
state |ψ0〉 and |ψ1〉, respectively. From the point
of view of ρctc, however, there exists no informa-
tion about the outcome of this projective measure-
ment. Hence it “sees” and adapts to the mixed state
ρin= Tr1[|Ψ〉〈Ψ|]= 1

2 (|ψ0〉〈ψ0|+|ψ1〉〈ψ1|). The state of the
CTC qubit is therefore different for local and non-local
preparation. If this was not the case, it would enable
superluminal signalling, which is in conflict with relativ-
ity [29].

Figure 4b) illustrates the evolution induced by CUxz,
when the input states |H〉 and |ψ1〉 are prepared using an
entangled resource |Ψ〉, rather than directly. The results
of the previously discussed distinguishability experiments
for this case are shown in Fig. 5b). In Fig. 5c) they are
compared to the case of local preparation and to standard
quantum mechanics for a fixed input state and a fixed
gate, respectively. Again, consistency of our simulation
is ensured by a quantum state fidelity of F = 0.9996(3)
between the input and output states of ρctc

In our simulation we find that the CTC-system can
indeed achieve perfect distinguishability of the (directly
prepared) states |ψ0〉 and |ψ1〉 even for arbitrarily close
states if the appropriate gate is implemented, see Fig. 5a).
Furthermore we show that the advantage over standard
quantum mechanics persists for a wide range of non-
optimal gate-state combinations, outside of which, how-
ever, the CTC-system performs worse (blue points). No-
tably, we find that for non-locally prepared input states
CTC-assisted state discrimination never performs better
than random guessing—a probability of 0.5—as shown in
Fig. 5b). The predictions for standard quantum mechan-
ics, in contrast are independent of the way the states |ψ0〉
and |ψ1〉 are prepared.

Decoherence. We further investigated the effect of
two important decoherence mechanisms on the simulated
CTC-system, shown in Fig. 2a). The first is a single qubit
depolarising channel acting on the input state |ψ〉, which
can be modelled as

ρ 7→ (1− 3p

4
)ρ+

p

4
(σxρσx + σyρσy + σzρσz) , (6)

where (σx, σy, σz) are the 3 Pauli matrices and p ∈ [0, 1]
quantifies the amount of decoherence.

The second form of decoherence concerns the con-
trolled unitary CUxz and is described as

ρ 7→ (1− ε)CUxz ρ CU
†
xz + ερ, (7)

where ε ∈ [0, 1] is the probability of the gate to fail,
describing the amount of decoherence that is present. For
ε = 0 the gate acts as an ideal controlled rotation CUxz,
while it performs the identity operation for ε = 1.

We tested the robustness of the state-discrimination
circuit in Fig. 2b)(ii) against both forms of decoher-
ence. For this test we chose CUxz as a controlled
Hadamard (i.e. θxz=π/4) and the initial states |ψ0〉=|H〉
and |ψ1〉= 1√

2
(|H〉−|V 〉) (i.e. φ=3π/2). Figure 6 shows

the distinguishability L of the evolved states as a function
of both decoherence mechanisms over the whole range of
parameters p ∈ [0, 1] and ε ∈ [0, 1]. Note, that the de-
coherence channel in Eq. (7) does not have an analogue
in the standard quantum mechanics case (i.e. without a
CTC), hence only the channel in Eq. (6) is considered
for comparison. It is further naturally assumed, that the
experimenter has no knowledge of the specific details of
the decoherence and therefore implements the optimal
measurements for the decoherence-free case. The physi-
cal validity of the simulation is ensured by consistency of
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ρctc across the boundary of the wormhole with an aver-
age fidelity of F = 0.997(4).
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FIG. 6: State discrimination as a function of gate and
qubit decoherence for locally prepared states. Here
ε quantifies the decoherence of the unitary interaction CUxz

(with θxz=π/4), which has no analogue in the standard quan-
tum mechanics case and p the single qubit depolarisation of
the input qubits |H〉 and |ψ1〉 (with φ=3π/2). The system
demonstrates robustness against both forms of decoherence
and the CTC-advantage persists up to p=

√
2−1 and ε= 1

3
, re-

spectively. The semi-transparent blue surface represents the
optimum in standard quantum mechanics. Error bars ob-
tained from a Monte Carlo routine simulating the Poissonian
counting statistics are too small to be visible on the scale of
this plot.

It is worth noting, that the interpretation of decoher-
ence effects in the circuit in Fig. 2a) is very different
from the linear scenario without a CTC. In the case of
single-qubit depolarisation the initially pure input state
becomes mixed. In contrast to the linear case now an
important distinction has to be made with respect to the
origin of the decoherence. If it results from an interac-
tion with the environment, which is the case considered
here, then ρctc “sees” an improper mixture and adjusts
to the mixed density matrix of the input state. If, how-
ever, the origin of the mixture is classical fluctuations in
the preparation apparatus, then shot-by-shot pure states
enter the circuit and the consistency relation holds ac-
cordingly shot-by-shot, resulting in a proper mixture at
the output. This shows that in the presence of a CTC it
would be possible to identify the origin of the decoher-
ence in an experimental setup.

Furthermore, careful analysis of the decoherence of the
unitary gate U reveals parallels to effects seen in non-
local state preparation. The decoherence is assumed to
arise from non-local coupling to the environment. Again,
due to a lack of classical knowledge of the outcome of an
eventual measurement of the environment, ρctc “sees”
the mixed process in Eq. (7) in every run of the experi-
ment. In the case of full decoherence the distinguishabil-

ity is reduced to 0.5 as in standard quantum mechanics.
The differences between local and non-local decoherence
in their interpretation and effect is one of the key insights
from our simulation.

DISCUSSION

Quantum simulation is a versatile and powerful tool
for investigating quantum systems that are hard or
even impossible to access in practice [20]. Although no
CTCs have been discovered to date, quantum simulation
nonetheless enables us to study their unique properties
and behaviour. Here we simulated the immediate adap-
tion of ρctc to changes in the CTC’s environment and
in particular the effect of different forms of decoherence.
We also show that the non-linearity inherent in the sys-
tem is in fact not uniform as shown in Fig. 3, suggesting
that non-linear effects only become apparent in certain
scenarios and for a specific set of measurements.

Moreover, we find intriguing differences with respect
to nominally equivalent ways of pure state preparation.
Although acknowledged in Ref. [29] this feature has not
been further investigated in the present literature. Im-
portantly this effect arises due to consistency with rela-
tivity, in contrast to the similar effect for mixed quan-
tum states discussed earlier, which is a direct result of
the non-linearity of the system [7].

Our study of the Deutsch model provides insights into
the role of causal structures and non-linearities in quan-
tum mechanics, which is essential for an eventual recon-
ciliation with general relativity.
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Supplemental Material

DISTINGUISHING (MIXED) QUANTUM
STATES

The measure L introduced in Eq. (4) has an operational
interpretation as the probability of obtaining the out-
come “different” when comparing two quantum states
by means of a single projective measurement on each
system. Notably, the minimum-error measurement for
discriminating two quantum states is indeed a projec-
tive measurement in a direction that depends on the two
states [30–32]. Hence, considering only projective mea-
surements is not a restriction and the measure is optimal
with the right choice of measurement direction. This re-
sult in particular also holds for mixed quantum states,
which will become very relevant in the next section.

The situation in the main text can be recast as a
game where Alice prepares two quantum systems, one in
state |ψ0〉 and one in state |ψ1〉 and sends them to Bob,
whose task is to determine whether they are different or
not. If Alice indeed sends two different states, then the
measure L is understood as Bob’s probability of either
guessing both states correctly or both incorrectly, which
are the two cases where he successfully distinguishes the
states. Hence, L is a natural measure for this task and—
given that Bob uses the knowledge about the states to
be distinguished—also optimal. In fact, given an optimal
choice of measurement direction, L is directly related to
the trace-distance metric D and therefore a similarly suit-
able measure of distinguishability:

L = p2correct + p2error = 1− 1

2
|〈ψ0|ψ1〉|2 =

1

2

(
1 +D2

)

Optimal CTC implementation

In the main text we investigated the case where the con-
trolled unitary CUxz is chosen non-optimally for the state
|ψ1〉. Notably, this is considered a conscious choice of
the experimenter, in contrast to decoherence of the gate,
which is beyond their control. Hence, the knowledge
about θxz is available and can be used to optimize the
measurement direction of the final projective measure-
ment as is done in the case of standard quantum mechan-
ics. Although in the non-optimal CTC-case the output
states are mixed, this does not change the fact that the
optimal measurement is projective. Hence, the quantity
L can be optimized depending on the states |ψ0〉, |ψ1〉
and the gate CUxz. The corresponding results are shown
in Fig. S1, which differs from Fig. 5 in that the CTC case
is now optimal for the chosen gate.

Note that now the CTC-circuit always achieves the
best distinguishability of 1/2 for non-local state prepa-
ration. In the local case the advantage over standard

quantum mechanics is extended to a wider range of non-
optimal combinations. Furthermore, we observe recovery
of distinguishability for combinations far from optimal,
see Fig. S1.

State identification

As an alternative approach we consider a scenario where
Alice prepares two known quantum states |ψ0〉 and |ψ1〉
at random and sends them—one at a time—to Bob, who
is given the task of identifying each of the states. Sim-
ilarly to the state-discrimination case, the optimal mea-
surement is a projective measurement in a direction that
depends on the two states. The figure of merit that is
intrinsically related to this task is the probability of suc-
cess,

psucc = p|ψ0〉p(ψ0 | |ψ0〉) + p|ψ1〉p(ψ1 | |ψ1〉),

where p|ψ〉 is the probability for the state |ψ〉 to be sent
and p(φ | |ψ〉) is Bob’s probability for guessing |φ〉 in the
case where he received the state |ψ〉. The optimal mea-
surement direction can again be chosen based on knowl-
edge of the two states to be identified. In the scenario
considered here, this information is available to Bob and
the states are prepared with equal probability. The op-
timal probability of success is then given by

psucc =
1

2

(
1 +

√
1− |〈ψ0|ψ1〉|2

)
=

1

2

(
1 +D).

Hence, in this case psucc is also directly related to D,
making it an equivalent measure of distinguishability. We
have analyzed our experiment from this point of view and
find the same qualitative behavior: the CTC circuit out-
performs standard quantum mechanics for the optimally
chosen unitary interaction, as well as for a range of non-
optimal choices. The results are shown in Fig. S2, which
parallels Fig. 5.

Note that in contrast to Fig. 5, the CTC-circuit al-
ways achieves, but never surpasses 1/2 in the case of
non-locally prepared states.
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The exploration of wave phenomena and quantum properties of massive systems offers an intriguing
pathway to study the foundations of physics and to develop a suite of quantum-enhanced tech-
nologies. Here we present an optomechanical scheme to prepare non-Gaussian quantum states of
motion of a mechanical resonator using photonic quantum measurements. Our method is capable
of generating non-classical mechanical states without the need for strong single-photon coupling,
and is resilient against optical loss and initial mechanical thermal occupation. Additionally, our
approach provides a route to generate larger mechanical superposition states using effective inter-
actions with multi-photon quantum states. We experimentally demonstrate this technique on a
mechanical thermal state in the classical limit and observe interference fringes in the mechanical
position distribution that show phase super-resolution. This opens a feasible route to explore and
exploit quantum phenomena at a macroscopic scale.

INTRODUCTION

Generating quantum superposition states in macroscopic
systems is an important goal in experimental quantum
science. Studying such states will allow us to probe the
limits of applicability of quantum mechanics and to har-
ness quantum physics for new technologies. Early ev-
idence for quantum phenomena with massive systems
was provided by electron diffraction experiments [1] and,
through the efforts of the last nine decades, quantum-
matter-wave behaviour has been observed for neu-
trons [2], trapped ion systems [3], ultracold atoms [4], and
even molecules comprising many hundreds of atoms [5].
A promising route to explore quantum behaviour on an
even more macroscopic scale is provided by quantum op-
tomechanics [6] where a mechanical oscillator interacts
with an optical field via radiation pressure. This versatile
quantum-optical platform enables tests of fundamental
physics [7–9], the development of microwave-to-optical
interfaces [10], and high-precision weak-force sensors [11].
Indeed, the LIGO gravitation-wave antenna can be con-
sidered a large-scale optomechanical system [12, 13]. Re-
cently, impressive progress has been made using both
opto- and electro-mechanical systems with examples in-
cluding single-phonon-level operations [14–17], quantum
coherent coupling [18], mechanically-induced squeezing
of light [19, 20], and even opto-mechanical entangle-
ment [21]. Experimental efforts continue in a diverse
set of directions, however, progress is hindered by three
main factors: weak single-photon coupling, sensitivity
to optical loss, and mechanical decoherence. The ap-
proach we introduce here exploits measurement-induced
non-linearities [22] to overcome the challenges of weak
coupling and optical loss. In addition, our approach of-
fers resilience against initial thermal occupation and can
also be readily employed in cryogenic systems to over-
come the challenge of thermal decoherence.

To understand radiation pressure consider the reflec-
tion of a single photon from a mechanical resonator. The
reflection imparts a momentum—inversely proportional
to the wavelength—onto the resonator and concurrently
the optical field acquires a phase-shift—proportional to
the mechanical displacement. This momentum, however,
is typically very small compared to the quantum noise
of the resonator due to weak optomechanical coupling.
In order to enhance the strength of this interaction, ex-
perimental efforts often employ an optical cavity to in-
crease the number of reflections [6]. Utilising such cavity
enhancement, the seminal works of Bose, Jacobs, and
Knight [7]; and Marshall et al. [8], proposed using a su-
perposition of the optical vacuum and a single photon
to generate optomechanical entanglement with the mo-
tion of a mechanically oscillating mirror forming part
of a Fabry-Perot cavity. In this case, the mechanical
resonator is subject to a quantum superposition of the
identity operation (no photon present) and a displace-
ment operation (single photon present), thus generating
a mechanical Schrödinger-cat state.

Our method enables the generation of mechanical su-
perposition states without the need for non-classical op-
tical input states such as single photons. Rather, we use
an optomechanical interaction for a time much shorter
than the mechanical period [23] with a weak optical
coherent state and then project the reflected field, via
photon counting, onto a superposition of zero and one
photon to conditionally generate the superposition. In
contrast to Refs. [7, 8], the measurement used in our
scheme leaves the mechanics in a single-mode superposi-
tion state, which is achieved by projection from a more
easily prepared form of optomechanical correlations. A
single-mode quantum superposition state—with compo-
nents separated in the momentum quadrature—will show
interference fringes in the position probability distribu-
tion with a frequency inversely proportional to the super-
position separation. When the photon detection registers
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the required event to prepare such a state an indepen-
dent readout beam is then used to verify and charac-
terise the mechanical state. The process of our scheme
is non-classical and generates quantum states of motion
independent of the coupling strength and for finite ini-
tial thermal occupation. Moreover, the size of the gener-
ated mechanical superposition state can be made larger
by projection onto an optical N00N -state [24–26], which
can be implemented using coherent state inputs, multi-
port interferometry, and multi-photon coincidence mea-
surements [27]. Unlike preparation of large N00N states,
projection onto these states is experimentally simple.
We implement this process experimentally and observe
the first mechanical interference fringe pattern and the
predicted phase-superresolution for a two-photon coinci-
dence measurement. In this proof-of-concept experiment
we observe a high-visibility fringe pattern in the mechan-
ical position but we do not observe any non-classical
features due to quantum decoherence and low readout
sensitivity. Generating and observing single-mode non-
classicality, such as Wigner negativity, of a massive me-
chanical oscillator remains an outstanding challenge. Our
measurement-based-scheme offers a promising route to
achieving this important goal and can be readily applied
to a number of optomechanical systems beyond the sys-
tem used here. This experimental technique provides a
powerful platform to empirically explore open-quantum-
system dynamics, test potential collapse models of the
wavefunction [28–30], and enable the development of
quantum-enhanced weak force sensors.

RESULTS

Mechanical state preparation via photon detection—
For simplicity we first describe our scheme for two-port
photon counting before generalizing to multi-port quan-
tum measurement. The two-port case describes our ex-
perimental results and can be implemented with Mach-
Zehnder-type interferometers. Figure 1A shows a con-
ceptual model of our experiment, where a weak coher-
ent state is injected and interacts with a mechanical res-
onator in one arm of an interferometer. The two optical
fields inside the interferometer then interfere on a beam-
splitter and photon counting is performed on the two out-
put ports. A single-photon click on one of the detectors
effectively projects the optical state that was inside the
interferometer onto the path-entangled number state, i.e.
(|10〉+|01〉)/

√
2 , which is the state used in Refs. [7, 8]. If,

instead, both detectors register a single photon then, due
to second-order quantum interference, the optical state
that interacted with the mechanical resonator within the
interferometer must have been a 2-photon N00N -state
(|20〉 − |02〉)/

√
2. In this case, the mechanical oscillator

was subject to a superposition of the identity operation
and a two-photon radiation-pressure displacement, thus
enhancing the size of the superposition by a factor of two
compared with the single photon detection case.

This operation can be conveniently described using the
measurement- (or Kraus-) operator approach, which al-
lows us to conveniently compute the mechanical state
after a measurement as well as the measurement out-
come probabilities. Consider a mechanical resonator in
the pure initial state |ψin〉M and coherent states |α〉1|α〉2
in the interferometer arms 1 and 2, respectively (i.e. the
state after the initial 50/50 beamsplitter in Fig. 1A). The
state immediately after the interaction with mode 1 of the

interferometer is then given by eiµa
†
1a1Xm |α〉1|α〉2|ψin〉M,

where, µ = 4πx0/λ is the momentum transfer per pho-
ton in units of the mechanical quantum noise. Here,
x0 =

√
~/mω is the mechanical ground state size (m;

effective mass, ω; mechanical angular frequency), Xm =
x/x0 is the mechanical position operator in units of x0,
and a1,2 are the annihilation operators for the interfer-
ometer arms 1 and 2. The two optical fields then in-
terfere on a beam-splitter, via B†a1B = ta1 + ra2 and
B†a2B = ra1− ta2, where r2 and t2 denote the intensity
reflectivity and transmittivity, respectively. The mechan-
ical state after this interaction and photon measurement

is |ψout〉M ∝ 2〈n|1〈m|Beiµa
†
1a1Xm |α〉1|α〉2|ψin〉M, where m

and n denote the number of photons detected in mode
1 and 2 after the beam-splitter, respectively. Assuming
a 50:50 beam-splitter and including a static phase-shift
φ in mode 2 of the interferometer we can introduce the
measurement operator,

Υ =
e−|α|

2

√
m!n!

αm+n

(
√

2)m+n
(eiµXm + eiφ)m(eiµXm − eiφ)n .

(1)

The mechanical output state can now be written
|ψout〉M ∝ Υ|ψin〉M. This operation corresponds to a
superposition of a mechanical displacement eiµXm and
the identity operation with a controllable phase eiφ.
More generally we may compute the mechanical state
via ρout

M = Υρin
MΥ†/P, where ρin,out

M are the input and
output mechanical density matrices, respectively, and
P =

∫∞
−∞dXM Υ†Υ〈XM|ρin

M|XM〉 is the probability for ob-
taining the photon counting outcomes m and n, see Sup-
plementary Materials for further details.

To examine the mechanical position probability distri-
bution of the state after the interaction and measurement
we may write 〈Xm|ρout

m |Xm〉 ∝ Υ†Υ〈Xm|ρin
m |Xm〉. The

function Υ†Υ is oscillatory in Xm, as obtaining a click in
our interferometer gives periodic information about Xm,
and can be interpreted as a filter acting on the initial
mechanical position probability distribution. This oscil-
latory behaviour is intrinsically linked with the cubic na-
ture of the full optomechanical radiation-pressure inter-

action a†1a1Xm and the non-linearity of photon counting.
This allows our scheme to generate non-Gaussian states
of motion, which would not be possible in the more com-
monly considered linearized regime with quadratic inter-
actions and linear measurements.

Experimental Setup— In our experiment (Fig. 1B) we
use a high-stress 1.7× 1.7 mm Si3N4 membrane [32] em-
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FIG. 1. Experimental scheme. (A) A mechanical resonator interacts with a weak optical coherent state inside an interferom-
eter with static phase-shift φ formed by two beam splitters with reflectivities η and η′. The optomechanical radiation-pressure

interaction is described via the unitary operation eiµa
†
1a1Xm , where a1 describes the optical field operator, and Xm describes

the mechanical position. Mechanical interference fringes are generated via photon counting on the two interferometer outputs,
which projects the field inside the interferometer onto a path-entangled photon number state. (B) In our experiment the two
interferometer paths in A are represented by orthogonal polarizations of a weak coherent-state, and a half-wave plate (HWP)
acts as a tunable beam splitter. For the interaction with the mechanical resonator—a SiN membrane—the polarization modes
are split into distinct optical paths using a calcite beam displacer (BD). One of the beams reflects off the membrane, while the
other one reflects off the adjacent frame and acquires a static phase shift φ, controlled by the yaw degree of freedom of the BD.
The modes are then interfered, separated, and detected by two single-photon detectors (APD). A position measurement of the
membrane is performed from the other side of the membrane using a similar setup and an independent readout beam. Lenses
focus the preparation and readout beams to a spot size of ∼50 µm on the membrane and glass plates are used to compensate for
shifts in the foci due to the birefringence in the BDs. (C) Noise power spectrum of the fundamental vibrational drum mode of
the mechanical resonator with resonance frequency of ωm/2π = 105.64 kHz. (D) Balanced-detector time-traces used to measure
the mechanical state for three example phase space points (shown on the right) with displacements of 103 nm (dotted, green),
222 nm (solid blue) and 458 nm (dashed, orange), respectively. Here X and P are the mechanical position and momentum
quadratures, respectively, in units of the interferometer readout range λr/4 = 158.2 nm (corresponding to the turning-points
of the interferometer).

bedded in a 10 × 10 mm Si-frame. The membrane has
a thickness of 50± 2.5 nm and at our state-preparation-
field wavelength of 795 nm has a measured reflectivity
of 23.0 ± 0.5 %, while the frame has a reflectivity of
20.5±0.2 %. The noise-power spectrum of the fundamen-
tal drum mode at ωm/2π = 105.64±0.02 kHz is shown in
Fig. 1C. At room temperature and at atmospheric pres-
sure the mechanical line-width (FWHM) was measured
to be δωm/2π = 3.10± 0.05 kHz and the effective mass is
on the order of 100 ng, which comprises approximately
1016 atoms. In order to probe the regime where the op-
tomechanical phase shifts are large, i.e. µ2〈X2

m〉 & 1, we
use a ring-piezo to drive the membrane motion.

The membrane is mounted in a way that allows optical
access from both sides, and forms the central part of two
folded Mach-Zehnder interferometers (MZI), see Fig. 1B.
One interferometer is used for mechanical state prepara-
tion with photon counting, as illustrated in Fig. 1A, while
the other is used for mechanical position readout using a
balanced detector and a ∼100 µW laser at a wavelength

of 632.8 nm. Our setup employs a compact polarization
interferometer design that does not require active phase
stabilisation [33]. The two arms of the MZI in Fig. 1A are
represented by orthogonal polarizations and the role of
the beamsplitter is achieved by a half-wave plate (HWP),
which allows for precise control of the splitting ratio. For
the interaction with the membrane the two polarizations
are separated using a calcite beam-displacer and recom-
bined after reflection from the mechanical device.

An APD click—either one of the detectors or a coin-
cidence event within a 7.8 ns window—triggers the bal-
anced detector and recording of a 50 µs long trace at a
sampling rate of 100 MS/s, see Fig. 1D. The mechanical
quadratures X and P , defined in units of the interfer-
ometer readout range (λr/4), are then extracted from
a fit to this time trace. For small mechanical displace-
ments the time trace is almost sinusoidal, but becomes
overmodulated as the resonator displacement surpasses
∼100 nm. In addition, for larger mechanical displace-
ments we observe a mechanical-position-dependent am-
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A B C D

FIG. 2. Observed mechanical states of motion showing interference fringes. Each plot shows the measured phase-space
points (bottom), together with the corresponding mechanical position and momentum quadrature histograms, and a normalized
3D probability-density histogram of these points (top), with the mechanical position quadrature histogram reproduced again
for easy visualization. The quadrature histograms contain a fit (solid, red line) using the theory model and corresponding
3σ mean prediction bands (shaded orange). All axes are in units of the interferometer readout range. (A) Measured initial
Gaussian thermal state. (The truncation at the origin is due to finite resolution of our data acquisition.) (B) Conditional
motional state prepared via {m,n} = {0, 1} detection, which is shifted in phase-space along −X and shows the start of a second
peak in the right tail of the Gaussian envelope. (C) Conditional state for {m,n} = {1, 0} detection, which is as B, but shifted
along +X. Again, note the second peak, now on the left. (D) Two photon ({m,n} = {1, 1}) detection generates a mechanical
fringe pattern in X with twice the frequency of the single photon detection cases due to super-resolution of the measurement.
Three maxima of the fringe pattern are observed. In all of these cases the interferometer phase φ was set to π/2. Also note
that the momentum quadrature remains close to the initial distribution for all of these measurements.

plitude modulation of the interferometer signal. We have
taken the first order corrections due to this amplitude
modulation into account when fitting the time traces, see
Supplementary Material. For each type of click event we
record ∼3000 such time traces to create a phase-space
histogram of the mechanical motion. By using a com-
bination of spectral and polarization filters the read-out
beam transmitted through the membrane is suppressed
below the dark-count level of our single-photon detectors
of ∼150 Hz.

Large phase-shift regime— Figure 2 shows the mea-
sured mechanical phase-space distributions prepared via
one- and two-photon measurements on a piezo-driven ini-
tial Gaussian thermal-state (Fig. 2A) with RMS posi-
tion fluctuations of 198 ± 2 nm. This corresponds to
the regime of large optical phase-shifts, i.e. µ2〈X2

m〉 & 1.
For single-photon detection, low frequency fringes are ob-
served with a π phase-shift between the detection events
{m,n} = {0, 1} (Fig. 2B) and {1, 0} (Fig. 2C). Moreover,
we observe the start of the second fringe peak in the tails
of the Gaussian envelope, which is on the right in Fig. 2B
and the left in Fig. 2C. In the case of a two-photon de-
tection event {m,n} = {1, 1} (Fig. 2D), the mechanical
resonator interacted with an effective two-photon N00N
state. Consequently, we observe phase super-resolution
in the mechanical interference pattern at twice the fringe-
frequency of the single photon cases. We would like to
highlight that this work goes significantly beyond previ-
ous all-optical schemes observing phase super-resolution
via multi-photon projection [27, 31] as our scheme maps
the fringe pattern into the state of another bosonic mode
rather than being a modulation to the photon count rate

with a scalar phase quantity. Thus, the super-resolution
achieved by such projections is used here as a resource for
state preparation. In a quantum regime, the fringe pat-
tern observed can then be interpreted as either the quan-
tum interference in the superposition state or from the
filter of the quantum measurement. This measurement-
based technique provides a considerable advantage for
ultimately generating non-classical states of mechanical
motion and can be employed in other quantum optical
systems. Note that all conditional states (Fig. 2B-D)
feature interference fringes in the position distribution,
while the momentum quadrature remains as the initial
Gaussian distribution. The conditional mechanical states
shown here were prepared with the phase set to φ = π/2,
which gives a fringe maxima in the centre of the distri-
bution for the {1, 1} event.

We would like to additionally note here that our
method can be utilised to determine the optomechani-
cal coupling strength µ by fitting to the fringe pattern
observed. This technique requires a well calibrated posi-
tion axis in units of the mechanical ground state size and
can be performed for any mechanical thermal occupation.

Small phase-shift regime— Our scheme can also gen-
erate non-Gaussian states of motion in the regime of
small optomechanical phase shifts, i.e. µ2〈X2

m〉 � 1. In-
deed, mechanical non-classicality, in the form of Wigner
negativity, can be generated independent of the coupling
strength, providing a promising route to generate and
explore macroscopic mechanical quantum states even for
systems with weak single-photon-coupling. For small µ,
applying our scheme to the mechanical ground state for
{m,n} = {0, 1} with φ = 0 yields (eiµXm − 1)|0〉 '
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(iµXm)|0〉 = iµ2−1/2|1〉. Here, |1〉 denotes a single
phonon Fock state and the mechanical position operator
in terms of the phonon annihilation (b) and creation (b†)
operators is Xm = 2−1/2(b + b†). This conditional state
is a result of quantum interference and has no classical
description [34–36]. Note that in this regime the detec-
tion event {m,n} = {1, 1} generates a similar state. The
Wigner function of this mechanical single-phonon Fock
state and its two conjugate quadrature distributions are
shown in Fig. 3B. A mechanical Fock state has a rota-
tionally invariant distribution in phase-space and has the

quadrature distribution Pr(Xm) = 2π−1/2X2
me
−X2

m for all
quadrature angles. For µ2〈X2

m〉 � 1 the filter for these
detection events is Υ†Υ ∝ µ2X2

m. Thus, we note that the
position probability distribution after this operation has
the same form as a Fock state for any thermal occupa-
tion, not just the ground state.

BA

0

0.2

0.4

0.1

0.3

0.2

0

0.2

0.4

0.3

0.1

0.1

0.3

FIG. 3. Non-Gaussian mechanical states prepared
with weak single-photon coupling. (A) Experimentally
observed mechanical phase-space distribution for the detec-
tion event {m,n} = {1, 1} with φ = 0 in the weak coupling
and weak drive regime, in units of the interferometer read-
out range. The position probability distribution here has the
same form as that of a single phonon Fock state. (B) Theo-
retical Wigner function of single phonon Fock state, plotted in
units of the mechanical quantum noise. This state would be
obtained when applying our scheme to the mechanical ground
state for the same parameters as in Fig. A. Note that the Fock
state has a non-Gaussian momentum distribution whereas our
data has a Gaussian momentum distribution due to the ther-
mal initial state.

To observe this type of fringe pattern we use the detec-
tion event {m,n} = {1, 1} on a mechanical thermal state
with RMS position fluctuations of 91 ± 1 nm. The ob-
served mechanical phase-space distribution and quadra-
ture distributions are shown in Fig. 3A. The measured
position probability distribution is in good agreement
with the theoretical prediction. Note that, for this large
thermal excitation, however, the momentum quadrature
probability distribution remains Gaussian.

Generalisation to larger N00N states— Our scheme
can be extended to generate mechanical superposition
states with increasing separation size by only changing
the optical measurement. This extension would require
two coherent states, one of which interacts with the me-
chanical system, while the other acquires a static phase

shift, together with N −2 vacuum ancilla modes injected
into an optical N -port interferometer, see Fig. 4A. N -
fold single-photon detection at the output of the N -port
then projects the optical field so that the mechanical
resonator effectively interacted with an optical N00N -
state. The mechanical resonator is thus subject to a su-
perposition of a radiation-pressure force with 0 or N pho-
tons thus enhancing the separation in the superposition
state (cf. Fig. 4B). See the Supplementary Material for a
mathematical description and the heralding probability.
Here, the high-frequency fringes of the optical N00N -
state are mapped onto the mechanical position probabil-
ity distribution. Importantly, the states generated by our
scheme can exhibit strong negativity of the Wigner quasi-
probability distribution independent of the optomechan-
ical coupling strength µ. As shown in Fig. 4C, this neg-
ativity approaches zero from below asymptotically with
increasing n̄ thus the scheme is resilient against initial
thermal occupation. Furthermore, we would like to high-
light that when using large N00N states this negativity
scales with n̄−1. This scaling should be contrasted to the
scaling available using single quanta addition [34], which
goes with n̄−2, see the supplementary for more details.
Moreover, for low amplitude optical coherent states, our
scheme is robust against optical loss and inefficiency due
to the single photon conditioning.

DISCUSSION

We have introduced a technique that exploits the quan-
tum nature of multi-photon measurements to generate
non-classical states of motion of a mechanical resonator.
Additionally, we have performed a proof-of-concept ex-
perimental demonstration of this technique, which al-
lowed for the first observation of mechanical interference
fringes within a thermal distribution. These fringes, al-
beit at a classical level, have the same qualitative form
as those expected from a canonical quantum superpo-
sition state, which would be the result of applying our
method to a low entropy initial state. This highlights
that the appearance of fringes in the position quadrature
distribution is not a sufficient condition for non-classical
behaviour. Moreover, fringes can be generated by our
method independent of the initial thermal occupation,
which emphasizes the importance of precise calibration of
the position quadrature measurements and characteriza-
tion of the initial state. While our continuous-wave read-
out technique is suitable for the regime experimentally
tested here, this technique cannot resolve displacements
below the size of the ground state, which is required
to observe mechanical non-classicality. Different tech-
niques, such as quantum non-demolition pulsed quadra-
ture measurements [23, 37] will allow this limit to be
surpassed and perform mechanical quantum state recon-
struction [38]. Looking ahead, one possible experimental
approach to generating significant non-classicality with
our scheme is to use MHz-frequency oscillators, which
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Non-classical

eiµa
†
1a1XM

φ

FIG. 4. Generation of larger superposition states. (A)
Optical setup requiring two input coherent states, a linear
optical network UN , and single photon counters. One of
the two input coherent states interacts with the mechanical
resonator and then the inputs are projected onto an opti-
cal N00N state, which generates a mechanical superposition
state with a separation that increases with N , see text. (B)
Simulated Wigner functions for an initial mechanical ground
state (n̄ = 0) and superposition states prepared via multi-
photon detection. From left to right: initial ground state, and
mechanical states prepared using 1-, 2-, 3-, 4-photon N00N -
state projections for µ = 1.5 and φ = 0. Note that these me-
chanical states are generated via superposition of identity and
displacement and are thus not symmetric around the origin.
(C) Minimum of the Wigner distribution (minW ) as a func-
tion of the initial thermal occupation n̄ for various values of
µN . Note that our scheme generates Wigner-negativity even
in the limit of weak coupling µN → 0 (dotted, black line)
and saturates for large coupling µN → ∞ (dashed, black
line). All experimental configurations (i.e. arbitrary values
of µ,N and n̄) result in states within the grey shaded area,
and always feature Wigner-negativity. Moreover, for arbitrary
single-photon coupling strength µ and arbitrary N00N -state
size N the generated states achieve the maximum possible
negativity of −1/π, as n̄→ 0. The coloured solid lines corre-
spond to N = 1, 2, 3, 4 multi-photon coincidence events, for
µ = 1.5, as in Fig.B.

have been experimentally cooled to a thermal occupa-
tion of n̄ ' 0.34 [39]. For electro-mechanical systems, one
could employ a secondary coupling outside the resolved-
sideband regime to a weak optical field or to a microwave
field together with superconducting qubits, to implement
our protocol. At this thermal occupation, the Wigner
negativity generated by our scheme for weak coupling is
−0.07, and in the limit of strong coupling is −0.19, which
should be compared with the maximum value achievable
of −π−1 ' −0.32.

Our scheme offers four main advantages: (i) Our
process generates non-classical mechanical states—
signified by negativity in the Wigner quasiprobability
distribution—without the need for strong single photon
coupling and (ii) with favourable scaling against the ini-
tial thermal occupation. (iii) Our scheme is resilient
against optical loss, as photon counting with low am-
plitude input coherent states can be used. And (iv),
larger superposition states can be prepared by changing
only the measurement and projecting onto optical N00N
states. This combination of advantages thus dramatically
improves the feasibility to generate and observe mechan-
ical single-mode non-classicality—a key outstanding goal
of the field—and the high-visibility mechanical fringes
observed here are a key step towards achieving this goal.
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Supplementary Information:
Generation of Mechanical Interference Fringes

by Multi-Photon Quantum Measurement

Here we provide further details of the theoretical model, the experimental setup, and the data analysis techniques
used.

SI. THEORETICAL MODEL

In this section we give a mathematical model to de-
scribe mechanical state preparation via interaction with
an optical field followed by photon counting as introduced
in this work. We first discuss the details of the two-
port case, which can be achieved using a standard Mach-
Zehnder interferometer configuration. We then generalise
this to multi-port interferometry, which can be used to
generate larger mechanical superpostition states by pro-
jection onto an optical N00N state.

A. Two-port model

For optomechanical systems where the interaction time
is much shorter than the mechanical period the mechan-
ical free evolution can be neglected, and the radiation-
pressure interaction is in this case described by the uni-
tary

U = eiµa
†
1a1Xm . (S1)

Here, a1 is optical annihilation operator in mode 1

([a1, a
†
1] = 1), and Xm = (b + b†)/

√
2 is the mechani-

cal position operator in units of the mechanical quantum
noise for mechanical annihilation operator b. Defining
Xm = x/x0, and Pm = p/p0 (with mechanical position x,
and momentum p), we have [Xm, Pm] = i for [x, p] = i~
and x0 =

√
~/(mωm) and p0 =

√
~mωm wherem is the ef-

fective mass and ωm is the mechanical angular frequency.
The unitary in Eq. (S1) accurately describes our cavity-
free experiment, which uses a simple reflection, as well as
cavity-based experiments in the regime where the cavity
amplitude decay rate κ is much larger than the mechan-
ical resonance frequency.

The optomechanical coupling strength, µ, quantifies
the momentum kick per photon in units of p0. For the
simple case of a single reflection this strength is

µ = 4πx0/λ , (S2)

where λ is the optical wavelength. This can easily be
seen by noting that: (i) the momentum transfer per sin-
gle photon p0µ = 2~k = 4π~/λ , and (ii) that phase shift
µXm = 2kx, where k is the optical wavenumber. For
a cavity-optomechanical system with interaction Hamil-

tonian H/~ = −g0a
†
1a1(b + b†) the momentum kick per

photon is enhanced linearly by the cavity finesse F

µ ∝ g0

κ
=

4Fx0

λ
. (S3)

We will use a Kraus operator approach to determine
the state of the mechanical resonator conditioned on a
‘click’-event in the interferometer. The Kraus- or mea-
surement operator also allows the heralding probabilities
for these events to be easily computed.

For our two-port case, the Kraus operator is

Υm,n = 2〈n| 1〈m|B12e
iµa†1a1Xm |α〉1

∣∣αeiφ
〉

2 , (S4)

where α ∈ R denotes the coherent-state size, B12 is the
beam-splitter operator, and we have included the static
phase shift φ into the coherent state inside the inter-
ferometer. Using a matrix representation, we write the
action of a 50:50 beam-splitter as

(
a1

a2

)
→ 1√

2

(
1 1
1 −1

)(
a1

a2

)
. (S5)

The measurement operator then becomes

Υm,n =
e−α

2

√
m!n!

αm+n

(
√

2)m+n
(eiµXm + eiφ)m(eiµXm − eiφ)n .

(S6)
The state of the mechanical resonator after the interac-
tion and ‘click’-event is determined by

ρout
m = Υρin

m Υ†/P , (S7)

where P is the heralding probability, which ensures that
Tr {ρout

m } = 1.
Important to this work is observing the mechanical po-

sition probability distribution after the interaction and
measurement. The operator Υ depends only on the op-
erator Xm and we can thus write

〈Xm|ρout
m |Xm〉 =

1

PΥ†(Xm)Υ(Xm)〈Xm|ρin
m |Xm〉 . (S8)

Hence, Υ†Υ can be interpreted as a filter, acting on the
position distribution of the resonator

Υ†Υ =
1

m!n!
e−2α2

α2mα2n×
(1 + cos(µXm − φ))m(1− cos(µXm − φ))n .

(S9)

Note that α will only affect the heralding probability and
does not change the form of the conditional mechanical
state. See Figs. 2 and 3 of the main text for experimental
observations of such mechanical interference fringes. The
heralding probability P is given by

P = Tr
{

Υ†Υρin
m

}

=

∫ ∞

−∞
dXm Υ†Υ〈Xm|ρin

m |Xm〉 .
(S10)
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For a mechanical thermal state with position distribu-
tion

〈Xm|ρin
m |Xm〉 =

1√
π(1 + 2n̄)

exp

[ −X2
m

1 + 2n̄

]
, (S11)

where n̄ is the mean thermal occupation, the heralding
probabilities Pm,n for the click events {m,n} take the
form

P0,0 = e−2α2

,

P0,1 = e−2α2

α2(1− e−µ2(1+2n̄)/4 cosφ) ,

P1,0 = e−2α2

α2(1 + e−µ
2(1+2n̄)/4 cosφ) ,

P1,1 = 1
2e
−2α2

α4(1− e−µ2(1+2n̄) cos(2φ)) .

(S12)

Note that for finite α and µ2(1 + 2n̄) > 0 the heralding
probability is non-zero for all φ.

FIG. S1. Unnormalized theoretical mechanical posi-
tion probability distributions for various click-events.
An initial Gaussian state ({0, 0}) is subject to Υm,n, with
µ = 1, n̄ = 4, φ = π for single-photon ({0, 1}, {1, 0}) and
two-photon ({1, 1}) click-events. Note that the case {1, 1}
generates a fringe-pattern with twice the frequency compared
to the single-photon cases.

B. Multi-port model

Here we discuss how larger mechanical superposition
states can be generated using single photon detection at
each of the outputs of a multi-port interferometer. See
Fig. 4A for an optical schematic. A coherent state in-
teracts with a mechanical resonator and then (together
with a second reference coherent state) is projected onto
an optical N00N state where N is the size of multi-port.
The mechanics will have then undergone a superposition
of the identity operation (zero photons) and a displace-
ment corresponding to the N -photon radiation pressure
kick. The corresponding unitary UN for a real-bordered
symmetric canonical multi-port, can be represented by a
matrix with elements

M
(k,l)
N =

1√
N
ei2πkl/N , (S13)

where k, l ∈ [0, N − 1]. This form is a multi-port gener-
alisation of the matrix used in Eq. (S5). As an example,
the three-port case is

M3 =
1√
3




1 1 1
1 ei2π/3 ei4π/3

1 ei4π/3 ei2π/3


 . (S14)

The output field operators are given by aout = M ain,
where ain/out are N -dimensional column vectors. The
state of light before the unitary UN for an N -fold coinci-
dence event is

〈000...0|aN ...a3a2a1U
†
N =

〈000...0|UNaNU†N ...UNa3U
†
NUNa2U

†
NUNa1U

†
N .

(S15)

Here UNajU
†
N is readily computed from the matrix ex-

pression, Eq. (S13) above.
In our scheme vacuum is injected into modes 3 to N ,

which leaves an optical N00N state in modes 1 and 2.
Vacuum inputs in modes 3 to N implies that only the
first two columns of M (Eq. (S13)) are being used. That
is, there is no excitation in modes 3 to N . We can then
write the un-normalised state for modes 1 and 2 as

〈ϕ1,2| ∝ 〈00| 1

(
√
N)N

N−1∏

m=0

(a1 + e−i2πm/Na2) . (S16)

All the cross terms in the product vanish and we have

〈ϕ1,2| ∝
1

(
√
N)N

〈00|(aN1 − (−1)NaN2 ) ,

∝
√
N !

(
√
N)N

(
〈0N | − (−1)N 〈N0|

)
. (S17)

The measurement operator that acts on the mechanical
resonator for this multi-port case is then

ΥN =
1

(
√
N)N

e−|α|
2

αN (eiNµXm − (−1)NeiNφ) . (S18)

Choosing φ = π as in the main text, this operator has
the same form as Υ1,0. The displacements, however, are
increased by a factor of N , compared to Eq.(S9). As
a consequence, the frequency of the cosine in the filter-

function Υ†NΥN is increased by a factor of N and thus
exhibit phase-super resolution.

Υ†NΥN =
2

NN
e−2|α|2 |α|2N (1−(−1)N cos(NµXm−Nφ)) .

(S19)
Using this expression we can also compute the heralding

probability PN = Tr
{

Υ†NΥNρm

}
, which, for an initial

thermal state with n̄ is given by

PN (n̄) =
2

NN
e−2|α|2 |α|2N×

(
1− (−1)N exp[− 1

4µ
2(1 + 2n̄)N2] cos(Nφ)

)
.

(S20)
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Importantly, this expression is always positive when the
mechanical position distribution has non-zero spread,
µ2(1 + 2n̄) > 0.

Using Υ†NΥN we can quantify how much Wigner-
negativity can be generated by our scheme for given pa-
rameters N , n̄ and µ. We find that the minimum of the
Wigner-function is given by

minW =

−1

π(1 + 2n̄)

1− exp[−(1/4)µ2N2/(1 + 2n̄)]

1− exp[−(1/4)µ2N2(1 + 2n̄)]
.

(S21)

Note that for n̄ = 0, minW = −1/π independent of the
other parameters, reaching the lowest possible value for
a Wigner function. In the opposite limit, where n̄→∞,
minW approaches zero from below, see Fig. S2A. Note
also, that projecting onto larger optical N00N -states in-
creases the generated Wigner-negativity for fixed thermal
occupation n̄, as illustrated in Fig. S2B.

It is also instructive to study the limits of weak
(µN→0) and strong (µN→∞) optomechanical coupling

minW
µN→0−−−−−→ −1

π

1

(1 + 2n̄)3
, (S22)

minW
µN→∞−−−−−−→ −1

π

1

1 + 2n̄
. (S23)

Thus, Wigner negativity is generated by our scheme
even for weak optomechanical coupling. Moreover, the
amount of negativity that can be generated is bounded by
the two power-laws Eqs. (S22),(S23), as shown in Fig. 4C
and Fig. S2A

SII. EXPERIMENTAL DETAILS

Our experiment makes use of an inherently stable po-
larization interferometer design, which can be intuitively
understood in analogy to a Mach-Zehnder interferometer
(MZI), see Fig. S3. The interferometer has two modes,
which are represented by orthogonal polarizations |H〉
and |V 〉. A half-wave plate takes the role of the beam
splitter in the MZI, with the advantage of a very precise
and continuously tunable splitting ratio. The two po-
larization modes are then separated into different spatial
modes for the interaction with the mechanical resonator
and recombined afterwards, using calcite beam displac-
ers. This design achieves good phase stability due to
common-mode rejection of all non-rotational mechanical
noise, without requiring any active locking.

With our implementation the two beam splitters in the
MZI are the same optical element and thus constrained to
equal splitting ratios, which, however, is not a restriction
for our experiment. Furthermore, our experimental ar-
rangement allows to probe the position of the membrane
from the other side, which significantly simplifies the ex-
perimental setup. Independent of losses in the setup, the
optimal signal-to-noise ratio (SNR) is achieved with a
splitting ratio of 1/2.

B

A

FIG. S2. Wigner-negativity generated by our scheme.
(A) Loglog-plot of the Wigner-negativity as a function of the
initial thermal occupation for various values of µN . For small
n̄ the generated negativity is close to the maximal value of
−1/π, and experiences power-law behaviour for large n̄. (B)
Wigner-negativity as a function of µN for various values of
initial thermal occupation n̄. The black-dashed line traces the
inflection-points of the negativity as a function of µN and is
given to aid observation of the scaling of these curves.

In order to achieve a large initial thermal state, the
membrane was mounted on a Steminc SM412 ring-piezo
with a capacitance of 1.8 nF and a nominal resonance
frequency of 1.7 MHz. The piezo was driven with noise
across the mechanical resonance frequency at 106 kHz.
Note, however, that the drive couples to

√
X2 + P 2, such

that the drive voltage must be Chi-distributed in order
to achieve Gaussian initial states in X and P . The piezo
was driven with a discretized version of this distribution,
sampled at 3.2 MS/s. Figure S4 shows this distribution,
together with the measured distributions of X, P and√
X2 + P 2.

Synchronization of the two APDs for coincidence de-
tection and of the APDs and the balanced detector for
the position measurement was achieved using a pulsed
laser diode. The diode pulses with a FWHM of 12 ns at
a variable repetition rate were used as an input on the
position readout side. The beam was reflected off the
membrane and detected by the balanced photodetector,
with one input blocked. Part of the beam is transmitted
through the membrane, attenuated to the single-photon
level and detected by the APDs. This technique allowed
for synchronization of the two APDs to within 1 ns and
between single-photon detection and position readout to
within 7 ns, which is 4 orders of magnitude below the
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eiµa
†
1a1XM

φ
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B
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R
esonator

eiµa
†
1a1XM

FIG. S3. Reflective polarization Mach-Zehnder inter-
ferometer. (A) In a standard Mach-Zehnder interferometer,
an input beam in mode a or b is split on a beamsplitter (BS)
with reflectivity rp into two spatial models c and d. One
mode obtains a static phase-shift φ, while the other inter-

acts with the mechanical resonator via eiµa
†
1a1X . The two

beams then interfere on a second beamsplitter with reflectiv-
ity r′p and are split into the output modes e and f . (B) In
the polarization interferometer the modes a, d, e correspond
to horizontal polarization and b, c, f to vertical polarization.
The BS are replaced by a half-waveplate (HWP), which al-
lows for precise control of the splitting ratio. In the reflective
design here, the polarization modes are spatially separated on
a calcite beamdisplacer (BD). One of the beams reflects off
the mechanical resonator, the other of the static frame of the
resonator. The beams are recombined into the same spatial
mode and interfere in the HWP. Finally they can be separated
using another BD. The arrow over the mode-labels indicates
the propagation direction.

time of a mechanical period.

SIII. DATA ANALYSIS

Upon an appropriate trigger signal (either APD1-click,
APD2-click or coincidence click within 7.8 ns) a trace of
the homodyne signal is recorded. This trace consists of
5000 points, sampled at a rate of 100 MS/s, thus result-
ing in a window of ±25µs around the trigger event. The
X- and P -values for each trace were obtained from a fit
of the mechanical response function and the phase-space
distribution was reconstructed from 3000 such measure-
ments. The expected mechanical response function is of
the form

A ∗ cos (X cos[ωmt] + P sin[ωmt] + φr) + c, (S24)

where A is the full amplitude of the homodyne signal, ωm

is the mechanical resonance frequency, φr is the static
phase of the readout interferometer and c is the residual
DC-component in the signal due to asymmetric loss in
the two arms of the homodyne interferometer. In our ex-
periment we used a balanced photodetector with a gain

Drive-Voltage [V]

P
ro

ba
bi

lit
y 

D
en

si
ty

Drive-Voltage [V]

A

B C

FIG. S4. Drive spectrum and response of the mechan-
ical resonator. (A) Probability density histogram of the
measured voltage distribution used to drive the piezo. The
orange line corresponds to a Chi-distribution fit with shape-
parameter ν = 1.98±0.03 and the blue shaded area represents
the 3σ confidence region of the fit. (B) The measured distri-
butions of X (blue) and P (orange) using the drive in Fig. A,
together with fitted Normal-distributions (blue and orange
lines, respectively) with shape-parameters σx = 0.740± 0.009
and σp = 0.735 ± 0.008, respectively. The corresponding 3σ
confidence regions are shown in complementary colors (or-
ange and blue, respectively). (C) The phase-space norm√
X2 + P 2 is linearly proportional to the drive-voltage and

is thus well-described by a Rayleigh distribution with shape-
parameter σ = 0.727 ± 0.008 (solid line with shaded 3σ re-
gions).

of 105 V/A and a bandwidth of 4 MHz, and the DC-
component c was compensated to zero by adding a tun-
able loss element in front of one detector. Since ωm, A and
c were measured independently and remained constant
throughout the experiment, the only free variables in the
fit were X, P and the read-out phase φr. These variables
have distinct effects on the shape of the response, thus
allowing for unique and stable fitting.

While Eq. (S24) describes the response very well in the

low drive regime
√
X2 + P 2 . 1, we observe a mechani-

cal position dependent optical amplitude modulation in
the readout signal for larger drive. We attribute this am-
plitude modulation to a mechanical position dependent
change in the reflectivity which is consistent with ad-
ditional measurements of the optical transmission with
time. The reflectivity of the mechanical device is depen-
dent on thin-film interference and thus any small change
in the refractive index of the can significantly affect the
reflectivity. We modelled this modulation using a multi-
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plicative function of the form

1− d ∗
∣∣∣cos

[
ωmt+ arctan(X/P )− π

4

]∣∣∣ , (S25)

where d describes the relative strength of the amplitude
modulation. The parameter d was used as an additional
free parameter in the fit and was found to scale linearly
with the drive strength. We used the function 1 − d|x|
as the first-order approximation, which gave stable fits
in the regime used. The arctan term transforms to the
rotating-frame picture, while the π/4 phase-shift results
in zero modulation when the membrane position is zero.

Note that the absolute value implies that the modula-
tion depends on the displacement of the membrane, but
not the direction. This model describes the observed re-
sponse very well for

√
X2 + P 2 . 3.2, which is the regime

where all data was taken. For larger drive we observe an
additional asymmetry in the amplitude modulation that
might be due to anisotropic stress in the material. Fi-
nally, for very low drive strength, the signal-to-noise ratio
is limited by the resolution of the oscilloscope, resulting
is a truncation in the center of the phase-space plot in
Fig. 2A.
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