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Abstract. The concept of information offers a more complete description of
complementarity than the traditional approach based on observables. We present
the first experimental test of information complementarity for two-qubit pure
states, achieving close agreement with theory. We also explore the distribution
of information in a comprehensive range of mixed states. Our results highlight
the strange and subtle properties of even the simplest quantum systems; for
example, entanglement can be increased by reducing the correlations between
two subsystems.

Complementarity reveals trade-offs between knowledge of physical observables. The best-
known example is wave–particle duality: a single quantum system may exhibit wave and/or
particle properties, depending on the experimental context. For a system in a two-mode
interferometer, this is quantitatively expressed by the fact that the interference visibility V and
the mode predictability P have to satisfy [1, 2]

V2 +P2 6 1. (1)

High-quality interference comes at the expense of the impossibility of predicting the path of
the system and vice versa, a phenomenon that has been demonstrated in a host of physical
systems [3–8]. Relation (1) equals unity only in the case of pure, single-particle, quantum states.
For mixed states, the left-hand side is always less than one and can even reach zero [3], which
means that there is no knowledge about whether the system behaves as a particle or a wave.
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Table 1. The three families of quantum states we use to explore information
complementarity: (i) pure states ρpure; (ii) highly entangled mixed states
ρwerner and ρmems (where |ψ−

〉, |φ+
〉 are two of the four Bell states); and

(iii) separable states ρas, ρs. I2 and I4 are the one- and two-qubit identity
matrices.

(i) ρpure = |ψ〉〈ψ |; |ψ〉 = cosα|00〉 + sinα|11〉 α ∈ [0, π/4]

(ii) ρwerner = p|ψ−
〉〈ψ−

| + 1−p
4 I4 p ∈ [0, 1]

ρmems = p|φ+
〉〈φ+

| + (1 − p)|10〉〈10| p ∈ [ 2
3 , 1]

06 S(ρ). 0.92

(iii) ρas = (p|0〉〈0| + 1−p
2 I2)⊗ |0〉〈0| p ∈ [0, 1]

06 S(ρ)6 1
I2/2 ⊗ (q|0〉〈0| + 1−q

2 I2) q ∈ [0, 1]
16 S(ρ)6 2

ρs = p|00〉〈00| + 1−p
4 I4 p ∈ [0, 1]

This knowledge deficit for a single particle in a mixed state can be attributed to
entanglement with a second particle. In addition to the local observables V and P , one therefore
includes the non-local observable C (which is the concurrence [9], a measure of entanglement)
and finds that [10, 11]

(V2 +P2)local + (C2)corr 6 1. (2)

The complementarity is now between the local properties of an individual subsystem and
its correlations with another subsystem. For pure two-particle states, relation (2) has been
experimentally tested to some extent in [12, 13]—albeit in its early form of interferometric
complementarity [14]. In [15], equation (2) has been measured for a ‘system’ qubit coupled to
an ‘environment’ qubit via an amplitude damping channel. But again, in the case of mixed states,
(2) does not saturate its bound. One could of course explain this as due to entanglement to yet
another particle and so on, ad infinitum4. It would, however, be preferable to precisely identify
the quantities involved in complementarity without resorting to virtual higher-dimensional
Hilbert spaces.

Here we experimentally study a version of complementarity between two quantum bits that
does not require infinite regression. It is phrased in terms of information and is symmetric and
exact, i.e. all subsystems are treated on an equal footing and the relations are saturated also for
mixed states. We experimentally test the complementarity for pure two-qubit states and explore
the distribution of information in many interesting mixed states; see table 1. Finally, we show
why traditional complementarity relations such as equation (2) cannot be exact for mixed states.
They do not take into account correlations that are not captured by entanglement.

Information complementarity goes back to the insight that information is physical [18] and
that the amount of information in a two-level quantum system (or qubit) is limited to 1 bit
[19, 20]. Complementarity may now arise because there is insufficient information to
simultaneously specify the results of different measurements that can be performed on a

4 This approach is in fact used to classify entanglement in multi-partite systems in [16].
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quantum system. The single-particle complementarity relation (1) reflects this by being bounded
to 1 (bit), a value that is saturated for a pure qubit. For a mixed state, the left-hand side of (1) is
equal to a suitable measure of the reduced information content of the system [20].

This provides an alternative interpretation of the two-particle complementarity,
equation (2). The total information content of two particles, Itotal, can be split into information
stored in subsystems, Ilocal, and a remaining part that we call the correlation information, Icorr,
giving rise to the following relation [21]

Ilocal + Icorr = Itotal, (3)

which defines Icorr. The natural way to quantify the information of a given quantum state
is to use its entropy. The information measure originally proposed in [20] is linked to the
so-called linear entropy and, as we show in appendix A, equation (3) is equivalent to (2) for
pure states. Note that (3) has the elegant feature of being symmetric with respect to subsystems,
i.e. Ilocal = Ia + Ib, whereas the local observables V2 and P2 in (2) capture only one of the
two subsystems. Their equivalence for pure states is a consequence of Schmidt decomposition
according to which both subsystems are described by the same density operator. Unfortunately,
for certain mixed two-particle states, the linear entropy measure leads to a negative Icorr; see
appendix A. We therefore adopt the von Neumann information I (ρ)= log2 d − S(ρ), where
S(ρ)= −Tr(ρ log2 ρ) is the von Neumann entropy of a d-dimensional system described by
the density matrix ρ, and we choose bits as the units of information content (N qubits
carry at most N bits). The correlation information is then the quantum mutual information,
Icorr = Itotal − Ilocal = S(ρa)+ S(ρb)− S(ρab), which is non-negative for all physical states and
is a measure for the total correlations present in a quantum state [22, 23].

Unlike traditional wave–particle duality, the information approach (3) has not been
explored in any experimental system to date. We now investigate information complementarity
for a range of two-photon quantum states. For pure two-qubit states, we can test
complementarity relation (3), with its right-hand side bounded to Itotal = 2; for mixed states,
it will allow us to highlight the different types of correlations present in these systems. Our
states can be grouped into three families (table 1): (i) ‘pure’ states, i.e. our best experimental
approximation to pure; (ii) two classes of highly entangled mixed states—the Werner and
maximally entangled mixed states [17, 24] (MEMS); and (iii) two classes of separable states.
These states were chosen because—except for our particular choice of MEMS5—they represent
the boundaries of the physical parameter space for two-qubit states in the tangle–entropy plane,
figure 1.

The experimental scheme is depicted in figure 2. A source based on a polarization
Sagnac loop [26, 27] produces two-photon states close to the ideal form |ψab〉 = cosα|Ha Hb〉 +
sinα|VaVb〉, where the logical qubit states ‘0’ and ‘1’ are encoded into the horizontal (H) and
vertical (V) polarizations of the photons a and b. The degree of entanglement is determined
by α, which is set by the pump laser polarization [26]. The resulting photons pass through two
channels, E1 and E2 (figure 2). We perform both full single-qubit state tomography [28] on the
individual photons a and b—from which we reconstruct ρa and ρb—and, separately, two-qubit
tomography [28] on the two-photon state, which yields ρab. These density matrices contain
all information that one can possibly have about the underlying quantum states, and we can
from them readily compute properties such as the tangle T—the concurrence C squared—or the

5 This particular MEMS was chosen over the rank-3 boundary MEMS [17] because it is well known, has a simple
mathematical form and can be reached from an entangled state with local operations [25].
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Figure 1. The tangle–von Neumann-entropy plane, showing the 48
experimentally created two-photon states. Error bars are smaller than the
symbol size. The lines are predictions for the ideal states, table 1. Data points
for ρas and ρs overlap. The shaded area represents unphysical states, and the
states on the boundary are rank-3 MEMS [17].

entropy, which are otherwise not directly accessible experimentally. The 48 created states are
shown in figure 1: for each, we calculate Ia = I (ρa) and Ib = I (ρb) to obtain Ilocal = Ia + Ib

and Itotal = 2 − S(ρab), respectively. For the correlation information Icorr, we subtract Ilocal

from Itotal.
Information complementarity for our experimental states ρpure is shown in figure 3.

When T vanishes, the total information is stored exclusively in the individual subsystems.
As the entanglement increases, so does Icorr, and as T approaches 1, Ilocal goes to zero.
This phenomenon is strictly quantum—a pure classical state cannot contain any mutual
information. More importantly, for pure quantum states, Icorr corresponds to the entanglement of
formation [29]. This means that information complementarity reduces to a sum of entanglement
and local information, each of which can be measured independently, and thus (3) has the same
form as (2), the only difference being that (3) is symmetric with respect to the subsystems, i.e.
it accounts for the local properties of both subsystems a and b. Because any pure entangled
two-qubit state can be obtained from the Schmidt form ρpure via local operations, the data in
figure 3 represent a conclusive test of (3) and (2) for all pure two-qubit states (see also the
appendix).

For mixed states, Icorr is no longer exclusively identified with entanglement [30, 31]. The
Werner states, ρwerner, for example, are a statistical mixture of a maximally entangled state
and white noise. The individual qubits in this state are always fully mixed, Ilocal = 0, and
their entire information content is stored in Icorr, as one can see in figure 4(a). As is well
known, Werner states are separable for a high noise admixture (T = 0 for S(ρwerner) > 1.8,
figure 1) but their Icorr does not vanish correspondingly, emphasizing that it does not measure
entanglement in this case.
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Figure 2. Experimental scheme. (a) A source [26, 27] creates pure two-photon
states with a tunable degree of entanglement. Channels E1 and E2 introduce
mixing before state tomography is performed. (b) For the creation of ρwerner
and ρs (table 1), an incandescent light source with tunable intensity is reflected
into the setup. The increase in accidental coincidence detections resembles white
noise. (c) For MEMS state creation [25], a beamsplitter (BS) is introduced.
The transmitted beam polarization is rotated by 90◦ and the reflected beam is
polarized at a polarizing beam splitter (PBS) before the beams are recombined
incoherently. Two steering mirrors control the splitting ratio between the two
beams and thus parameter p in ρmems (table 1). This technique allows the
creation of ρmems in the range of 06 S(ρ). 0.92. The remaining states can be
covered by dephasing the second photon once p = 2/3 is reached. In practice,
the initial tangle in our experiment was too low to create states with significantly
higher entanglement than the corresponding ρwerner. (d) Dephasing channel
for the creation of ρas. Jamin–Lebedeff interferometers introduce optical path
delays between the orthogonal polarization components of incoming photons in
a given basis. Two interferometers are used to first individually decohere photon
1 from zero to fully mixed and then photon 2.

By comparing the Werner to MEMS states, we show that Icorr is not even a monotonic
function of entanglement. Out of the several different existing classes [17] of MEMS, we chose
to create rank-2 MEMS, ρmems, using the method from [25], illustrated in figure 2(b). As
one can see in figure 4(b), the local information contents of these states are nonzero. For any
value of S, even though they are more entangled (cf figure 1), Icorr for ρmems is lower than
that for the corresponding ρwerner. In particular, we find that for Itotal = 1.4 bits the Werner
state has more mutual information Icorr = 1.387 ± 0.001 and less tangle T = 0.647 ± 0.004
than the corresponding MEMS, where Icorr = 1.315 ± 0.018 and T = 0.667 ± 0.007. The higher
entanglement of MEMS states in comparison to Werner states coincides with a relative decrease
of correlations. In our experiment, this difference is small, due to the difficulty of producing
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Figure 3. Information complementarity for ‘pure’ states ρpure. Ideally,
equation (3) is in this case Ia + Ib + Icorr = 2. The quantities involved are
measured independently; our result therefore represents a genuine test of
complementarity. Ideal pure states are represented by lines. Our data (• = Ia,
N= Ib,�= Icorr,�= Itotal) fall short of these due to experimental imperfections:
mostly non-ideal optical components and detector dark counts. Error bars are
smaller than the symbol size.
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Figure 4. Information content in (a) the Werner states ρwerner and
(b) maximally-entangled mixed states ρmems. (a) The entire information content
of ρwerner is stored in correlations. (b) Even though ρmems have more
entanglement (cf figure 1) than ρwerner, they have less Icorr (�). Solid lines
represent ideal states. Error bars for (a) are smaller than the symbol size (�=

Itotal, N= Ia, • = Ib). For (b), they were obtained by assuming Poissonian count
statistics.
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Figure 5. Information content in (a) asymmetrically, ρas, and (b) symmetrically
mixed product states, ρs. Both states are separable but ρs has nonzero
correlations Icorr. Lines represent the information content of the ideal states; data
points are measured values (�= Itotal, �= Icorr, N= Ia, • = Ib). All error bars
are smaller than the symbol size.

high-quality MEMS. There are, however, states for which the effect is far more pronounced,
as we show in appendix B. Such states indicate that complementarity relations such as (2)
miss some quantities as both local information and entanglement can grow from one state to
another.

Our third example shows that aspects of complementarity between local information and
correlations are already present in classical states. We consider two classes of mixed separable
states, ρas and ρs (table 1). The former, ρas, represents two individually dephased photons.
The latter, ρs, consists of a product state with a white noise admixture; see figure 2(d) for the
experimental details.

In figure 5(a), one can clearly see that product states with individually added noise, ρas,
do not contain any correlations, Icorr = 0. In contrast, states with globally added white noise, ρs,
contain Icorr = 0.094 ± 0.023 bits of mutual information at Itotal = 1 bit, whereas Ilocal is reduced
accordingly (figure 5(b)).

In conclusion, we performed a test of information complementarity and traditional
complementarity for pure two-qubit states and showed that the two approaches can be reconciled
in this case. We measured the information distribution in mixed quantum systems, which
allowed us to demonstrate that correlations are not a monotonic function of entanglement.
This suggests what is missing in traditional complementarity relations such as (2). These
relations are not exact, because they do not take into account any other correlations than
those due to entanglement. It remains an open question whether a traditional complementarity
relation—based on directly observable quantities—can be formulated which includes classical
correlations and quantum discord [30, 31], dissonance [32] or other recently proposed
correlation measures [33, 34]. An interesting alternative might be to tie wave–particle duality to
the Bell inequality violations, as shown in [35] for Werner states.
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Figure A.1. Experimental verification of traditional complementarity relation (2)
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negative values (shaded area) for the full mixing range. (�= Itotal, N= Ia,
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We thank R Łapkiewicz, B P Lanyon, Č Brukner and A Zeilinger for valuable input. This
work was supported by the ARC Centres of Excellence, Discovery and Federation Fellowships
programs and an IARPA-funded US Army Research Office contract. TP acknowledges support
from the National Research Foundation and the Ministry of Education, Singapore.

Appendix A. Complementarity from linear entropy

Here we show that for pure states, the complementarity relation (2) of the main text is a special
case of information complementarity

Ilocal + Icorr = Itotal. (A.1)

For the moment, we quantify information using the measure of [20], which is based on
linear entropy [17]. The information content of the state of a single two-level system (qubit)
is given by the length of the corresponding Bloch vector, and a pure state of N qubits
carries N bits of information. For pure states of two qubits, Itotal = 2. Since the information
is invariant under unitary operations, we write a pure two-qubit state in its Schmidt basis
|ψ〉 = cosα|00〉 + sinα|11〉. Therefore, subsystems a and b are described by the same density
operator and the local information reads Ilocal = Ia + Ib = 2 cos2 α = 2(V2

i +P2
i ), where i = a

or b and Vi (Pi ) denotes visibility (predictability) for the respective subsystem. Information in
correlations is now given by Icorr = 2 − 2 cos2 α = 2 sin2 α = 2C2, where C is the concurrence,
defined by C = |〈ψ |ψ̃〉| with |ψ̃〉 ≡ σy ⊗ σy|ψ

∗
〉= − cosα|11〉 − sinα|00〉, because |ψ∗

〉 is the
complex conjugate of |ψ〉 written in the standard basis. Putting these findings into (A.1)
gives relation (2) of the main text. Figure A.1(a) presents an experimental verification of this
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Figure A.2. Theory plot for states ρd(γ ) with 0< γ < 1 in comparison with
the Werner states ρwerner (red line) and MEMS ρmems (green line). The blue
dashed lines represent states dephased in two conjugate bases, with different
weightings γ and γ α. The information content of dephased states is the same
as that for ρwerner and is larger than that for the MEMS states even for
entanglement arbitrarily close to zero.

traditional complementarity relation. Note that information complementarity based on linear
entropy has been discussed, for example, in [36].

Figure A.1(b) shows that the information measure based on the linear entropy is
nonadditive in the sense that Icorr is negative for the product state ρas, defined in the main
text. This is the reason why we to stick to von Neumann entropy instead of linear entropy in the
main text.

Appendix B. Doubly dephased states

Here we present a class of weakly entangled states of two 2-level systems, for which Icorr is
consistently higher than that for the MEMS states. Consider the states

ρd(γ )=
1

4
(I ⊗ I − (1 − γ )σx ⊗ σx − (1 − γ )(1 − γ α)σy ⊗ σy − (1 − γ α)σz ⊗ σz), (B.1)

which can be viewed as a result of dephasing of the Bell singlet state |ψ−
〉 in the local bases of

Pauli operators σz and σx . The dephasing in the z-basis has strength γ and that in the x-basis has
strength γ α. Just like the Werner states, ρd(γ ) has information only in correlations, i.e. Ilocal = 0,
cf figure 4(a). We plot the entanglement (tangle) of these states for various α in figure A.2. Since
MEMS states with the same amount of total information have nonvanishing Ilocal, they contain
less information in correlations than does ρd(γ ), even at S(ρ) > 1 and large α, in which case the
entanglement of the dephased states is close to zero [37]. In the most extreme case, at S(ρ)= 1,
the state ρd has zero tangle but retains 1 bit of (classical) correlations Icorr. The rank-3 MEMS
(the boundary of the shaded area in figure 2), in comparison, has a tangle of T ∼ 0.48 and
Icorr ∼ 0.94 bit.
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