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This is the first of two articles that look at the new field of quantum information and it’s re-
lationship with optics. In this article we introduce the central concepts of quantum information,
illustrating them with simple optical examples. In the next article we will look at making entangled
photons, and some of their recent applications, including tests of nonlocality, quantum cryptography,
and quantum computation.

Flicking through Physical Review the last couple of
years you may have noticed a new section heading - quan-
tum information (QI). And, like many colleagues of mine,
you may have read an article or two in that section but
were put off by the theory, or worse, the jargon, and not
read on. If so, fear not because: a) you’re not alone and
b) many of the key ideas of quantum information are par-
ticularly accessible via optics, and so to readers of AOS
News.

So what is quantum information? A standard defini-
tion1 is “. . . the application of quantum mechanics to in-
formation theory. . . ”, which while succinct, isn’t terribly
informative. Perhaps better is the slogan “no information
without representation”, which highlights a key concept:
all information storage & processing is achieved via some
actual system, and the physics (and indeed chemistry,
biology, etc.) of that system necessarily constrains the
storage & processing.

If it were only a matter of constraints then our slo-
gan is really not very exciting. However, if we treat
the physical constraints as fundamental , and explore the
consequences for information processing given these fun-
damental limits (particularly quantum mechanical lim-
its) we come to a powerful realisation. It is possible
to achieve information processes in quantum mechanical
systems that are impossible with classical systems (and
classical computational logic).

“Enough!” I hear you cry (or that may be someone
else, in which case, thank you for your patience) “. . . what
about optics?” In this and the next article we look at
some of the basic concepts in quantum information, il-
lustrating them with optical examples, and look at some
recent optical QI experiments. On the way we’ll answer
important questions including: what are qubits? what
is entanglement? are there different kinds of entangle-
ment? how is it characterised? why is it powerful? how
is it measured? . . . and most importantly of all . . .why
should I care?

1 “Standard” in that I bandied it around the department and

noone disagreed.

I. AN INTRODUCTION TO QUANTUM

INFORMATION

A. What are qubits?

A qubit, or quantum bit, is any two level quantum
system. Figure 1 shows some common examples: spin
(electronic or nuclear); polarisation of light; energy lev-
els in an atom, ion, quantum dot, nucleus, etc. In this
article we will concentrate on using the polarisation of
light as a qubit. Like classical bits, qubits can exist as a
0 or a 1; unlike classical bits, they can exist in superpo-
sition states. If we consider horizontal polarisation, |H〉,
as our logical “0”, and vertical polarisation, |V〉, as our
logical “1”, then it becomes clear that diagonal polarisa-
tion, |D〉 = 1√

2
(|H〉+ |V〉), is the logical state 1√

2
(0+1),

and right-circular polarisation, |R〉 = 1√
2

(|H〉 + i|V〉),
is the logical state 1√

2
(0 + i1). Note that in quan-

tum information the transformation 0 → 1√
2

(0 + 1)

is called the Hadamard transform - in polarisation op-
tics we call a device that does this a waveplate (e.g.,

|H〉 → 1/
√

2 (|H〉+ |V〉)).
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FIG. 1: Examples of qubits: a) spin b) polarisation c) energy
levels.

Qubits carry phase information. For example,
diagonally- and right- circularly polarised light both are
equal weight superpositions of horizontal and vertical
light - they differ only in their relative phase. Experi-
mentally, if we send either a diagonal- or right- circular
photon onto a polarising beamsplitter, it appears at the
horizontal or vertical output ports with a probability of
50%, as shown in Figure 2a. This is no different to a
50/50 mixture of classical bits. However, as shown in
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Figure 2b, if we take the outputs of the beamsplitter
and combine them onto a second polarising beamsplitter
(with equal path lengths), we recover the original polar-
isation state and the qubit will always pass an analyser
set at θ◦. This kind of process is impossible with classical
bits.
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FIG. 2: Qubits carry phase information. a) a polarisation
qubit, θ◦, incident on a polarising beamsplitter. b) a po-
larisation qubit incident on a polarising interferometer. The
qubit is passed unscathed by the interferometer.

B. What is entanglement?

So is the only difference between classical and quantum
information the fact that in the latter we use qubits, and
these can be superpositions? The answer is no, there
is one other key difference: qubits can be correlated in
a way that can not be mimicked using classical bits.
This “super correlation” is known as entanglement2 af-
ter Schrödinger [1]. So what is entanglement? Textbooks
normally start with a mathematical definition, but we are
going to eschew that for an optical example.

Let Alice and Bob be two individuals with too much
time on their hands. There is an unknown source of light
sending photons to both Alice and Bob, as shown in Fig-
ure 3. They wish to determine the polarisation properties
of the light. Alice analyses only in the H/V basis, using
some polariser (where 0◦ ≡ H, 90◦ ≡ V). In either basis,

2 Although perhaps a better, and certainly more euphonious,

translation from the German would be “entwinement”.

half the time she sees a photon, i.e PH = PV = 1

2
. Bob,

meantime, is more of a free spirit, randomly analysing in
many bases, θ (where 0◦ < θ < 180◦, of course). Bob
finds that the light appears totally unpolarised, consis-
tent with Alice’s observation.

In addition, both Alice and Bob keep a timing list, as
follows: Alice “At 1 ns, I saw a photon at 0◦; at 2 ns, I
saw nothing; at 3 ns, I saw a photon at 0◦. . . ” Bob “At
1 ns, I saw nothing; at 2 ns, I saw a photon at 12◦; at 3
ns, I saw a photon at 47◦. . . ”

After doing this for a while, Alice and Bob stop, and
get together in the pub (why not?) to compare lists.
In particular, they calculate the probability of Bob see-
ing a photon when Alice sees a photon - the coincidence
proabability , PAB . They make the interesting observa-
tion that whenever Alice saw a photon at 0◦, Bob never
saw a photon at 90◦, i.e. PHV = 0, and in fact, had a
perfect probability of seeing a photon at 0◦, PHH = 1.
The coincidence probability versus Bob’s analyser setting
looks like that given in Figure 4.
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FIG. 3: An unknown source of light, analysed by Alice (A)
and Bob (B).
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FIG. 4: Coincidence probability vs Bob’s analyser setting.
Alice is analysing in the H/V (0◦/90◦) basis.

So what is this source? One possibility is a random
mixture of pairs of horizontally and vertically polarised
photons. For example: at 1 ns, a pair of horizontally
polarised photons might be sent to Alice and Bob; at 2
ns, another horizontal pair; at 3 ns a vertical pair, and
so on. To check this possibility, Alice and Bob return the
lab (fortified by fine ale) and repeat their measurements,
with the only change being that now Alice analyses in the
diagonal/anti-diagonal basis (45◦/135◦). Again, after a
period of time, they stop measuring and repair to the
pub. Now they observe that whenever Alice saw a photon
at 45◦, Bob never saw a photon at 135◦, PDD̄ = 0, and
the coincidence probability versus Bob’s analyser setting
looks like that given in Figure 5.
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FIG. 5: Coincidence probability vs Bob’s analyser setting.
Alice is analysing in the D/D̄ (45◦/135◦) basis.

This means the source cannot be a random mix of hor-
izontal and vertical pairs. If it were, then Alice may
see a diagonal photon, with PD = 1

2
, and Bob may see

an anti-diagonal photon, with PD̄ = 1

2
, and the coinci-

dence probability would be measured to be PDD̄ = 1

4
, not

PDD̄ = 0. So what is the source? To further confound
our heroes, they find that regardless of which basis Al-
ice chooses for her measurements, Alice and Bob always
find a perfect visibility coincidence fringe, i.e. they ob-
serve perfect correlations (or anti-correlations) in every
measurement basis . This is entanglement.

In quantum information terms, Alice and Bob have a
source of perfectly entangled qubits. How many bases do
they need to measure in before they completely charac-
terise the entanglement? Two? Infinity? . . .

C. Characterising qubits and systems of qubits

In general, 3 parameters are required to completely
characterise a qubit. The qubit can be represented graph-
ically by using these parameters to plot its position on,
or in, some characteristic sphere. For polarisation, this
is the Poincaré sphere (for spin, the Bloch sphere). In
the Poincaré sphere, as shown in Figure 6, the axes indi-
cate measurement probabilities in some appropriate ba-
sis set, e.g. H, D, & R. The polarisation of any light
source can be mapped onto the sphere by simply mea-
suring the probabilities of the light passing through H, D,
& R polarisers, respectively. Note that this requires 4 in-
tensity/count rate measurements: IH , ID , & IR plus, say,
IV , to give the total intensity/count rate (I0 = IH + IV )
and enable normalisation (e.g. PD = ID/I0). These
measurements are also known as the Stokes parameters ,
where S0 = I0 and S1,2,3 = IH,D,R, and are related by
S2

0 = S2
1 + S2

2 + S2
3 [2].

Completely polarised light will lie on the surface of
the sphere. In quantum mechanical terms we say this is
a pure state, and note that it is highly ordered. If the
measured light lies at the centre of the sphere, i.e. has
equal probability, P = 1

2
, of being found in any basis, the

light is unpolarised. In quantum mechanical terms we say
the state is mixed , and it is highly disordered. If the state
lies between the centre and the surface of the sphere, the
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FIG. 6: Poincare sphere. a) a set of measurement axes that
define the sphere. b) positions of a range of polarisation (log-
ical) states on the sphere.

light is partially polarised (partially pure). It is always
possible to uniquely decompose a single qubit into a pure
and a mixed component (or in polarisation terms, into
completely polarised and unpolarised components.)

Alternatively, qubits can be represented by a charac-
teristic matrix. For polarisation, this is the coherency
matrix , or in quantum mechanical terms, the density
matrix , ρ̂. In such matrices, the the diagonal ele-
ments are populations, and the off-diagonal elements
are coherences. A range of typical matrices, and the
states they represent, are shown below. The density
matrix contains all the information about the qubit.
For example: the purity, or degree of polarisation, of
the qubit is P=Tr{ρ̂2}; the von Neumann entropy is
S=-Tr{ρ̂log2(ρ̂)}; and the normalised linear entropy is
SL=2(1−P).
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FIG. 7: Single qubit density matrices

What about a system of qubits? We’ve already con-
sisted the simplest multi-qubit system in the previous
section: two entangled qubits. It turns out that such a
system cannot be completely characterised by isolated
measurements on it’s subsystem:, coincident measure-
ments are required. In polarisation terms, it is no longer
enough to measure the Stokes parameters of each beam:
we need to measure the bi-photon Stokes parameters
[3, 4]. These are 16 coincidence measurements, one possi-
ble set being the pairwise combination of the traditional
Stokes parameters, i.e. HH, HD, HR, HV; DH, DD, DR,
DV; RH, RD, RR, RV; VH, VD, VR, VV. While it is
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somewhat difficult to draw a 15-dimensional sphere that
represents the entangled state, it is relatively straightfor-
ward to combine these measurements into a 4x4 density
matrix. Some experimentally measured density matrices,
and the states they represent, are shown in Figure 8.
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FIG. 8: Two qubit density matrices (measured). a) the max-
imally entangled state, 1√

2
(|HH〉 + |VV〉). b) a half-mixed,

unentangled state. c) the fully mixed state.

D. Power of entanglement

Why is entanglement seen as a desirable characteristic
in quantum information? A full answer to this is beyond
the scope of this article but we can begin to get an in-
sight by considering the number of parameters required
to characterise a system of qubits.

As we’ve seen, a single qubit can be described by 3
parameters. If we have N qubits, but the qubits are not
entangled, then each qubit can be described by 3 pa-
rameters and the total number of parameters required to
describe the system is simply 3N (e.g. the polarisation
of N separate laser beams).

However, if the N qubits are entangled, then the sys-
tem is described by a density matrix of dimension, d =
2N , which in turn requires 2d − 1 = 4N − 1 parameters
to describe (or 4N − 1 measurements). Clearly, there is
an exponential blow-out in the number of parameters re-
quired to describe the system, as shown in the Table be-
low. From an experimental point of view, this means that
even a system of just 5 entangled qubits requires 1024
measurements (including the normalisation) - it rapidly
becomes a laborious task to fully characterise the system.

Instead of asking how many parameters are required
to describe the state, quantum computation inverts the
problem and treats that number of parameters as compu-
tational degrees of freedom, with only one measurement
made at the output of the device. So, in effect, the num-
ber of parameters are proportional to the computational
power, and that number increases exponentially with the
number of entangled qubits. Although this is a major
over-simplification (e.g., it assumes mixture is computa-
tionally useful) it does capture the flavour of why quan-
tum computation, and entanglement, is so powerful.

TABLE I: Scaling with number of qubits, N . ρ̂ is the density
matrix that describes a N -qubit system.

# of qubits, dimension of ρ̂, # of parameters,

N 2N 4N − 1

1 2 3

2 4 15

3 8 63

4 16 255

5 32 1023
...

...
...

E. Characterising entanglement

Let us return to just two entangled qubits. There are
a wide range of entangled states - however just 4 states
suffice to form a basis that span the space of possible
states. These are the Bell states : in polarisation terms,
|φ±〉 = |HH〉 ± |VV〉 & |ψ±〉 = |HV〉 ± |VH〉. (Note that
the normalisations have been omitted here, as they often
are in quantum information articles, but they are very
important!) For all 4 Bell states, the correlations are
perfect, but they look different in different bases. For
example, PHH = 1 for the |φ〉 states, whereas PHH = 0
for the |ψ〉 states. More subtly, PDD = 1 for |φ+〉, but
PDD = 0 for |φ−〉, and so on.

With 16 measurements (given by the bi-photon Stokes
parameters) we can reconstruct the density matrix and
completely characterise the state of two qubits. We can
then analyse this in a number of ways. Perhaps the sim-
plest is to look at the overlap, or fidelity, between the
measured density matrix and some ideal density matrix,
as shown in Figure 9.
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FIG. 9: a) density matrix of an ideal maximally entangled
state b) tomographically reconstructed density matrix (the
imaginary components are on the order of a few percent, and
are not shown). The Fidelity between these matrices is 0.97±
0.03 - the measured state is quite entangled.

A more quantitative approach is to analyse both the
degree of order and the degree of correlation in the mea-
sured density matrix. Earlier we discussed several mea-
sures for the degree of order (purity, von Neumann en-
tropy, linear entropy). The degree of correlation can be
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extracted by calculating either the entropy of entangle-
ment , or the tangle [5]. Measured entangled states can
then be compared to one another by plotting their posi-
tion on the tangle-entropy plane. Until recently, it has
only been possible to produce either highly-entangled,
highly-ordered states (circled area, top left, Figure 10),
in optical, atomic and ionic systems; or unentangled,
highly-disordered states (circled area, bottom right, Fig-
ure 10) in liquid-phase NMR systems. It was something
of an open question as to what states, if any, were pos-
sible outside of these regimes. However, using optical
qubits it is possible to controllably vary both the amount
of entanglement and order (specifically, vary the degree
of polarisation), as Figure 11 shows an entire range of
states, covering the T-S plane, have now been made ex-
perimentally.
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FIG. 10: Location of previous QI experiments on the tangle-
entropy plane. The question mark indicates uncertainty over
what states, if any, could be produced and characterised out-
side of these regimes.
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FIG. 11: Location of recent optical 2-qubit states on the
tangle-entropy plane. The data points are calculated tangle
and linear entropy from a range of measured density matri-
ces. The black curve indicates the Werner states: these are
states that are a combination of maximally mixed and non-
maximally entangled components. The grey region indicates
physically impossible combinations of T and SL.

II. QUANTUM INFORMATION IN AUSTRALIA

If you’ve read this far, please accept my most hearty
congratulations! In the next article we get onto the good
stuff: making entangled photons and some of their exper-
imental applications in recent years (from tests of non-
locality to quantum computation). Before I leave you,
however, let me finish with an update on quantum infor-
mation research in Australia.

Quantum information can be divided into two major
categories: systems of discrete variables (such as polar-
isation and spin); and systems of continuous variables
(such as frequency and quadrature). Both discrete and
continuous systems can be realised in optics: this article
has concentrated on the former as our research group at
UQ concentrates on discrete systems. There is excellent
experimental and theoretical work on continuous variable
systems done by the group of Dr Ping Koy Lam and Prof.
Hans Bachor at ANU: entanglement, cryptography, tele-
portation and so on can all be realised. It would require
yet another entire article (!) to describe these systems
in detail - I encourage interested readers to contact the
ANU group directly.

Outside of optics, there are major research efforts in
quantum information in Australia, perhaps the largest
being the Centre for Quantum Computer Technology.
This is an Australian multi-university effort (with nodes
at the Universities of New South Wales, Melbourne, and
Queensland, and a major collaboration with Los Alamos
National Laboratory) undertaking research on the funda-
mental physics and technology of building, at the atomic
level, a solid state quantum computer in silicon together
with other high potential implementations, including op-
tics. The Centre encompasses major research infrastruc-
ture at each of the three nodes, including an extensive
semiconductor nanofabrication facility, crystal growth,
ion implantation, surface analysis, laser physics, high
magnetic fields/low temperatures, and has substantial
theoretical support.

Of course, all of these groups are very interested in
hearing from motivated undergraduate students wishing
to pursue PhD’s, or motivated PhD’s wishing to pursue
postdocs. If you fall into one of these categories, I am
sure they would love to hear from you!
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