
Abstract

The development and theory of an experiment to investigate quantum computation with trapped cal-
cium ions is described. The ion trap, laser and ion requirements are determined, and the parameters
required for quantum logic operations as well as simple quantum factoring are described.

PACS numbers: 32.80.Qk, 42.50.Vk, 89.80.�h
LA-UR-97-3301; quant-ph/9708050

1. Introduction

In the early 1980's, various authors started to investigate the generalization of information
theory concepts to allow the representation of information by quantum states. The introduc-
tion into computation of quantum physical concepts, in particular the superposition princi-
ple, opened up the possibility of new capabilities, such as quantum cryptography [1], that
have no classical counterparts. One of the most intriguing of these new ideas is quantum
computation, first proposed by Benioff [2]. Subsequently Feynman [3] suggested that
quantum computation might be more powerful than classical computation. This notion
gained further credence through the work of Deutsch who introduced the idea of quantum
parallelism to describe the ability of a quantum computer to compute with quantum super-
positions of numbers [4]. Deutsch and Josza illustrated this power of quantum computa-
tion with an Oracle problem [5]. However, until 1994, quantum computation was an essen-
tially academic endeavor because there were no quantum algorithms that exploited this
power to solve interesting computational problems, and because no realistic hardware cap-
able of performing quantum computations had been envisioned. But then, building on ear-
lier work of Simon [6], Shor discovered quantum algorithms for efficient solution of two
problems that are at the heart of the security of much of modern public key cryptography:
integer factorization and the discrete logarithm problem [7, 8]. Later in 1994, Cirac and
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Zoller proposed that quantum computational hardware could be realized using known
techniques in the laser manipulation of trapped ions [9]. Since then interest in quantum
computation has grown dramatically, with several groups, including our own, now pursuing
trapped ion and other quantum computation experiments.

Since 1994, remarkable progress has been made: a single quantum logic gate has been
demonstrated with trapped ions [10]; quantum error correction schemes have been invented
[11, 12]; and quantum algorithms for solving new problems have been discovered [13, 14,
15, 16]. In this paper, we will review the subject of quantum computation and our develop-
ment of an experiment using trapped calcium ions. Also, we will explore the potential of
this technology and determine whether the future obstacles to progress will be fundamental
or technical.

The remainder of this paper is organized as follows. In section 2, the essential principles
of quantum computation are introduced. Section 3 briefly describes the potential for effi-
ciently factoring large numbers with a quantum computer. In section 4, we discuss various
quantum computational hardware ideas; the trapped ion proposal is then described in detail
in section 5. The experiment we are undertaking to realize such a trapped ion quantum
computer is described in section 6, and the last section summarizes our conclusions.

2. The Principles of Quantum Computation

The principles of quantum computation have been discussed in detail elsewhere (see for
example [8, 17]) so we shall only give a very brief introduction here. The essential idea of
quantum computation is to represent binary numbers using a collection of two-level quan-
tum systems. We will use the notation j0i; j1if g to denote the states of a single two-level
quantum system, known as a quantum bit or qubit.

With multiple qubits, the number of degrees of freedom in the system rapidly increases:
the Hilbert space describing the state of a system containing N qubits has 2N dimensions. It
is possible to use such a system to represent a number, x, between 0 and 2N ÿ 1� �, as the
state

jxi �
YNÿ1

i�0

jxiii ; �2:1�

where x �P Nÿ1
i�0 xi2i, and xi is the ith binary digit of x. Thus, for example, the decimal

number 11, which is written as 1011 in binary, would be represented by four qubits in the
state j1i3 j0i2 j1i1 j1i0, which is more conveniently written in the short-hand notation
j1011i.

To perform computations, we need to be able to perform certain unitary operations that
act on sets of qubits, known as quantum logic gates. Because quantum interactions are
reversible, the underlying logic of a quantum computer must itself be reversible. Fortu-
nately, it is already known that arbitrary Boolean operations can be constructed reversibly
[18], [19].

An example of a reversible logic operation is the NOT operation on a single qubit:

NOT : jbi ! j�bi: �2:2�
Arithmetic operations require logic operations between two or more qubits. For example, in
the controlled-NOT operation on two qubits

CNOT : jci jti ! jci jt � ci; �2:3�
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a target qubit, t, is flipped in value when a control qubit, c, has the value 1, but is un-
changed when the control has the value 0. The symbol � denotes addition modulo 2,
defined by the following truth table:

a b a � b

0 0 0
0 1 1
1 0 1
1 1 0

A second application of the CNOT gate returns the state to its starting value.
Another reversible logic gate used in quantum computing is the three-bit controlled con-

trolled-NOT (or Toffoli gate):

CCNOT : jc1i jc2i jti ! jc1i jc2i j c1 ^ c2� � � ti ; �2:4�
where ^ denotes the logical AND defined by the following truth table:

a b a ^ b

0 0 0
0 1 0
1 0 0
1 1 1

Using the Toffoli and CNOT gates it is possible to construct a simple binary adder:

ADD jai; jbi; j0i� � � CNOT1; 2 CCNOT jai; jbi; j0i� �� � � jai ja� bi ja ^ bi �2:5�
which places the sum modulo 2 of the first and second inputs (reading left to right) onto
the second output and the carry bit (originally reading 0) into the third output qubit. (Here,
the CNOT-operation on three qubits is defined as: CNOT1; 2 : jai jbi jci ! jai ja� bi jci.)
With these universal quantum logic gates, arbitrary arithmetic functions can be formed.

So far our discussion has not revealed any particular power associated with quantum
computation. Indeed, it is clear that the physical requirement of logical reversiblity leads to
extra information (relative to conventional computation) being carried forward. This extra
information, which allows the input of a logical operation to be determined from the out-
put, imposes additional memory requirements on quantum computation. Nevertheless, it is
known that the peculiarly quantum concepts of superposition and interference can be uti-
lized to provide a much more efficient solution of certain problems than is possible on any
conventional computer. We consider computations with superpositions of numbers first. A
unitary operation on a single qubit can be written as

V̂ k;j� � :
j0i
j1i

� �
!

cos
kp

2

� �
j0i ÿ i exp ij� � sin

kp

2

� �
j1i

cos
kp

2

� �
j1i ÿ i exp ÿij� � sin

kp

2

� �
j0i

8>>><>>>:
9>>>=>>>;: �2:6�

For example, V̂ 1=2; p=2� � : j0i ! 2ÿ1=2 j0i � j1i� � , is an equally-weighted superposition
of both qubit states. Now, starting with an L-qubit register in the state j0i �QLÿ1

i�0 j0ii, and
acting on each qubit with V̂ 1=2; p=2� � produces a coherent superposition of all 2L possible

Fortschr. Phys. 46 (1998) 4±±5 331



numbers:

j0i ! 2ÿL=2
YLÿ1

i� 0

j0ii � j1ii� � � 2ÿL=2
X2Lÿ1

a� 0

jai : �2:7�

Thus, in a sense the memory of a quantum computer is exponentially large. Now the quan-
tum register state above is a product state, whereas a more typical superposition state of the
register will be an entangled state (i.e. a state which cannot be written as a simple tensor
product of basis states). Such states can be produced with the aid of quantum logic opera-
tions. For example, an entangled state of two qubits can be produced from an initial pro-
duct state:

CNOT : 2ÿ1=2 j0i � j1i� � j0i ! 2ÿ1=2 j0i j0i � j1i j1i� � : �2:8�

Entangled states are required during typical quantum computations (and it is the exis-
tence of such entanglements that distinguish a quantum computer from a classical compu-
ter), but because of their non-classical properties the CNOT operation is extremely difficult
to construct in a physical system.

Thus far we have seen the power of quantum memory. Now we explore the power of
actual quantum computations. Let us suppose that we have determined the sequence of
quantum gates required to evaluate (reversibly) the value of some function, F, for an arbi-
trary input, a :

F̂ : jai j0i ! jai jF a� �i ; �2:9�

where the argument is held in the left register, and the right register is to hold the function
value. We might as easily have started with the left register in an equally-weighted super-
position of all values, and applied the same sequence of logic gates:

F̂ :
X2Lÿ1

a�0

jai j0i !
X2Lÿ1

a� 0

jaijF a� �i ; �2:10�

evaluating all 2L function values in one step. (Recall that the initial state of the left register
can be created from the j0i state with only L single qubit unitary operations.) If we were
only interested in the function values, we would now have to repeat the creation of this
state O�2L� times and measure the right register each time in order to determine the values.
Obviously, for this type of problem quantum computation offers no advantages, but if we
were instead interested in some joint property shared by all the function values, such as the
function's period, we could now perform a quantum Fourier transform (QFT) operation on
the left register to determine the period efficiently. The point is that particular function
values in the right register are associated with sequences of values in the left register that
reflect the period. The QFT, which is given by the following formula

jai ! 2ÿL=2
X2Lÿ1

c� 0

exp i2p
a:c

2L

� �
jci ; �2:11�

regroups these sequences to produce constructive interference at values corresponding
to periods of the sequence. Furthermore, the QFT itself can be constructed using only
O�L2� quantum gates, whereas a conventional discrete Fourier transform requires
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O�L2L� operations for a L-bit input register. For problems that can be reduced to
determining the period of a function, quantum computation may offer a more efficient
solution than conventional computation. All known quantum algorithms to solve inter-
esting problems use either the QFT or one of its variants, such as the quantum Hada-
mard transformation.

3. Quantum Factoring

The power of quantum computing can be illustrated with the example of Shor's algorithm
for integer factorization. According to the fundamental theorem of arithmetic, every integer
has a unique expression as a product of primes. Most modern factoring algorithms use as
their starting point the Legendre congruence: given a composite integer, N, which we want
to factor, the congruence

y2 � 1 mod N� � �3:1�
has non-trivial solutions, y � � a mod N� �, in addition to the trivial solutions,
y � � 1 mod N� �. If a non-trivial solution, a, can be found, it can be used to find a factor
of N, because the congruence

a� 1� � aÿ 1� � � 0 mod N� � �3:2�
implies that the factors of N are distributed between the two parentheses. Therefore, the
greatest common divisor (gcd)

gcd �a� 1; N� � factor of N ; �3:3�
which can be found using Euclid's algorithm, gives a factor of N. The problem of integer
factorization can therefore be reduced to finding a suitable a.

Shor's algorithm for finding factors using a quantum computer starts by using a classical
computer to find an integer x which shares no common factors other than 1 with N :

x ;N� � � 1 : �3:4�
Once a value of x is known, the function given by the following expression can be defined:

fx z� � � xz mod N� � ; z � 0; 1; 2; � � � ; N2 ÿ 1 : �3:5�
This function will be periodic, with some period r, �known as the order of x mod N� ��.
Mathematically, for some r,

fx z� r� � � fx z� �; �3:6�
and hence

xr � 1 mod N� �: �3:7�
Thus, if r is even a � xr=2 mod N� � is a candidate solution of Legendre's congruence and

hence allows factorization of N. (There are some technicalities about the choice of the
upper limit to the domain of fx and the classical post-processing required to deduce r from
the quantum part of the algorithm.)
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Shor's algorithm requires a 2 log2 N bit left quantum register to hold the argument z, and
an l � log2 N bit right register to hold the value of the function f :

jwi �
Y2lÿ1

i�0

j0iiL
Ylÿ1

j�0

j0ijR � j0iL j0iR ; �3:8�

where the suffix i�j� denotes the i-th (j-th) qubit of the left (right) register respectively.
Next, the left register is prepared in a superposition of all possible values, z, using 2l

operations, V̂ 1=2; p=2� �, one for each qubit:

jwi !
Y22l ÿ 1

i� 0

V̂i 1=2; p=2� � jwi � 1

2l

X2lÿ1

i� 0

jziL j0iR � jw1i : �3:9�

In the next step, the function fx z� � is written into the right register:

jw1i !
1

2l

X22lÿ1

i� 0

jziL j fx z� �iR � jw2i : �3:10�

Because the function fx is an exponential, the computation to build the function can be broken
down into repeated multiplications, which can be reduced to repeated addition and ultimately
represented in terms of the simple adder and similar circuits. The total number of quantum
gates required is therefore O l3� �, and some additional register space (roughly 2l qubits) is
required for this computation to proceed reversibly. The resulting state has the form

jw2i �
1

2l

X
z0

X
j

jz0 � jriL j fx z0� �iR �3:11�

in which sequences of left register states, separated by the period r, are associated with
common right register states. At this stage, it is easier to think about making a measure-
ment of the right register, resulting in a particular value f z0� � :

jw2i ! jji �
X

j

jz0 � jriL: �3:12�

Finally, a quantum Fourier transform can be performed on this state after which a mea-
surement is made, resulting in some value 22lj=r for some j. From this result, the order r
can be determined, and hence N can be factored. Note that there are some subtleties in-
volved when r does not divide 22l , and also the algorithm must be repeated until an x with
an even r is found.

To put Shor's factoring algorithm in perspective, the total number of logic gates, Ng and
the total number of qubits L required to factor an `-bit integer using a version of the algo-
rithm that we have recently developed are [20]:

Ng � 24`3 � O�`2�
L � 5`� 4 : �3:13�

In contrast, the best algorithm for factoring a large integer N using classical computers is
the (general) Number Field Sieve (NFS) [21], which runs in an asymptotic heuristic time
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TR given by:

TR � exp 1:923`1=3�log `�2=3
h i

: �3:14�

The NFS has much faster growth with the number of bits in N than the polynomial growth
of the quantum algorithm. The NFS was recently used to factor the 130-digit (430-bit)
integer known as RSA130 [22] using approximately 500 MIPS-years of computer time
distributed over the Internet. (1 MIPS-year is approximately 3:0 � 1013 instructions.) With
one hundred machines each rated at 100 MIPS dedicated to this problem, we would esti-
mate a factoring time of approximately 18 days. In contrast, the quantum factoring algo-
rithm applied to the same integer would require only � 2:0 � 109 quantum logic gates. If a
quantum computer had a clock speed of 100 MHz, it would factor this number in only
�20 seconds. Furthermore, the tremendous efficiency of the quantum computer would be-
come even more pronounced with larger numbers.

4. Quantum Computer Technologies

The three essential requirements for quantum computational hardware are: (1) the ability to
isolate a set of two-level quantum systems from the environment for long enough to main-
tain coherence throughout the computation, while at the same time being able to interact
with the systems strongly enough to manipulate them into an arbitrary quantum state; (2) a
mechanism for performing quantum logic operations: in other words a ªquantum bus chan-
nelº connecting the various two-level systems in a quantum mechanical manner; and (3) a
method for reading out the quantum state of the system at the end of the calculation.

So far, the serious proposals for quantum computational hardware fall into five basic
categories:

1. Ion traps. In this scheme, the quantum data registers consist of internal levels of ions
trapped in a linear configuration; the quantum bus channel is realized using the phonon
modes of the ions' collective oscillations; and readout is performed by using quantum
jumps. This scheme was originally proposed by Cirac and Zoller in 1994 [9], and was
used to demonstrate a CNOT gate shortly afterwards [10]. The number of qubits that
can be realized using an ion trap is limited by the various decoherence mechanisms,
which have been discussed in detail elsewhere [23, 24, 25, 26], and by the onset of
instabilities in the linear configuration of the ions [27]. One estimate [23] suggests that
computations involving 47 qubits and 4:0 � 105 operations may be possible with trapped
calcium ions before decoherence becomes a serious problem, although this estimate
ignores experimental decoherence effects such as ion heating and fluctuations of laser
phases, as well as recent advances in the field of quantum error correction. (A variant of
this idea using a photon mode of a cavity as the quantum bus bit has also been pro-
posed [28].) Our progress towards realizing a trapped ion quantum computer is the sub-
ject of the remainder of this article.

2. Cavity Quantum Electrodynamics (Cavity QED). Here the quantum data register consists
of the photon modes of an optical cavity, which are linked to other modes via excitation
of, and emission by, an atom passing through the cavity. This scheme is a development
of experiments in cavity quantum electrodynamics, and it has been used successfully to
realize quantum gates, although scaling up to more than 2 or 3 qubits will probably be
very difficult [29, 30]. A related all photon cavity QED realization has been proposed
[31].

3. Nuclear Magnetic Resonance (NMR). The orientation of spin-1/2 nuclei in a molecule
form the data register, and the spin-spin interactions provide the quantum bus channel.
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The states of the spins can be altered by applying a radio-frequency magnetic field and
readout is performed by measuring the magnetization of bulk samples, a procedure
which can only measure an ensemble average of the quantum state populations. There
are considerable subtleties associated with preparation of the initial states as well as with
the readout; for this reason, the NMR scheme has been called `̀ ensemble quantum com-
puting¸ [32] (see also [33]). This method has been used to realize experimental quantum
gates involving two and three qubits [34], however because the signal falls exponentially
with the number of qubits, the ability to scale up to large numbers of qubits seems to be
problematic [35]: the sources cited above give estimates of the largest number of qubits
that can be realized with NMR computers that vary from 6 to 20.
Similar concepts involving electron spins [36], the use of atomic force microscopy to
manipulate nuclear spins [37] and the interactions between electron and nuclear spins in
the quantum Hall regime [38] have been proposed.

4. Superconducting Quantum Interference Devices (SQUIDS). In this proposed realization,
which is still being developed and has not yet been used to realize a quantum logic gate,
the quantization of flux in a superconducting circuit would be exploited to give two
level systems [39, 40, 41]. The principal attraction of this proposal is that it is a solid
state device, and so if it can be made to work with a small number of qubits, scaling up
to large numbers of qubits should be relatively straightforward because the technology
for making miniaturized solid state devices containing a very large number of computing
elements already exists. However, solid state devices will also have their drawbacks, in
that they will be strongly coupled to a complex environment, so decoherence may be-
come an insurmountable problem.

5. Quantum Dots. Quantum dots are regions of artificial inhomogeneity in a crystal, which
can be placed in a controlled manner. They can be used to trap single electrons, the
orientation of whose spin can then be used as to store information [42, 43]. Like the
SQUID proposal, this idea has not yet been used to demonstrate a logic gate, but offers
the same advantage of being a solid state device.

5. Theory of Quantum Computation with Ions in a Linear Trap

We shall now describe in detail the Cirac-Zoller trapped-ion quantum computer concept
[9] (see also refs. [44, 45]). In this scheme, illustrated in fig.1, each qubit is the electronic
ground state (j0i) and a metastable excited state (j1i� of an ion, which has been laser
cooled to rest in a linear radio-frequency quadrupole ion trap. Computational operations are
performed with coherent laser-ion interactions driving Rabi oscillations between the relevant
quantum states of the register. At the end of the computation, the results are read out using
the quantum jump technique. The principal advantages of the trapped ion scheme are that
many of the techniques required to prepare and manipulate quantum states have already
been developed for precision spectroscopy work; secondly, that the decoherence rates owing
to decay of the excited ionic state and heating of the ionic motion can be made small in the
virtually perturbation-free (ultra-high vacuum, low electromagnetic noise level) environment
of an ion trap; and finally, there is an experimentally demonstrated technique, quantum
jumps, for reading out the result of a computation with high probability.

The first step that must be accomplished for quantum computation is to prepare an iso-
lated quantum state of several ions in which each ion is spatially localized and cooled to
the quantum ground state of its vibrational motion. The techniques employed for trapping
and cooling the ions are described in detail below. Operating the trap at low ion densities,
Doppler cooling produces a so-called ªstring-of-pearlsº configuration: the ions become ar-
ranged in a line and each is localized in a spatial region whose dimensions are very much
less than the wavelength of the optical transition. The spacing between adjacent ions can be
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made conveniently large (30 mm, say) by striking a balance between their Coulomb repul-
sion and the axial confining potential. This crystallized structure permits the ions to be
addressed by lasers for quantum computation. It has been demonstrated that a single ion
can be cooled to its vibrational ground state in an ion trap using resolved sideband cooling
in the optical regime [46]. Because we shall employ the quanta of the ions' collective vibra-
tions (i.e. phonons) as a `̀ quantum bus channelº¸ connecting different qubits, these vibra-
tions must initially be in their ground states. However, cooling to the vibrational ground
state has yet to be demonstrated for more than two ions. With the ions in their internal and
phonon ground states and with the cooling lasers turned off, the system is prepared for the
actual quantum computation to begin.

5.1. Phonon Modes

We shall assume that ions are sufficiently tightly bound in the directions transverse to the
trap axis that we need only consider their motion along the axial direction (i.e. the x-axis in
fig.1). Suppose that the m-th ion is displaced a small distance qm from its equilibrium
position x0

m. The Lagrangian for the oscillations of the ions about their equilibrium posi-
tions is

L _qm; qm� � � M

2

XN

m� 1

� _qm�2 ÿ 1

2

XN

n;m� 1

Cnmqnqm ; �5:1�

where N is the number of ions, M is the mass of each ion and the coupling matrix Cnm is
defined by

Cnm � @2V

@xn @xm

� �
0

; �5:2�

where V here stands for the ions' potential energy, and the subscript 0 denotes that the
double partial derivative is evaluated at qn � qm � 0. The potential energy, which consists
of two parts, the binding potential due to the trap electrodes and the Coulomb interaction
energy between the ions themselves, is given by:

V xm� � �
XN

m� 1

1

2
Mw2

xxm�t�2 �
XN

n;m� 1
m 6� n

e2

8pe0

1

jxn�t� ÿ xm�t�j ; �5:3�
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where xm�t� � x0
m � qn�t� is the position of the m-th ion, e is the charge of the electron (we

have assumed that the ions are singly ionized), e0 is the permittivity of free space, and wx

is the angular frequency characterizing the the harmonic binding potential. If there were
only one ion confined in the trapping potential, then its oscillations would be harmonic
with this angular frequency. The elements of the matrix Cnm may be calculated by differen-
tiating eq. (5.3) and evaluated using the values for the equilibrium positions of the ions,
obtained numerically (see ref. [49]).

The eigenvectors b�p�m �p � 1; 2; . . . N� of the matrix Cnm are defined by the following
formulas:XN

n� 1

Cnmb�p�n � m2
pb�p�m �p � 1; . . . ; N� ; �5:4�

where m2
p �p � 1; 2; . . . N� are the eigenvalues (which are always positive). The eigenvec-

tors are assumed to be numbered in order of increasing eigenvalue and to be properly
normalized. The first eigenvector (i.e. the eigenvector with the smallest eigenvalue) can be
shown to be

b�1� � 1����
N
p 1; 1; . . . ; 1f g ; m1 � 1 : �5:5�

The normal modes of the ion motion are defined by the formula

Qp�t� �
XN

m� 1

b�p�m qm�t� �p � 1; 2; . . . N� : �5:6�

The first mode Q1�t� corresponds to all of the ions oscillating back and forth as if they
were rigidly clamped together; this is referred to as the center of mass (CM) mode. The
second mode Q2�t� corresponds to each ion oscillating with an amplitude proportional to its
equilibrium distance from the trap center. This is called the breathing mode. There are a
total of N modes altogether.

The Lagrangian for the ion oscillations, eq. (5.1), may be rewritten in terms of these
normal modes as follows:

L _qm; qm� � � M

2

XN

p� 1

� _Q2
p ÿ m2

pw2
xQ2

p� : �5:7�

Thus the canonical momentum conjugate to Qp is Pp � @L=@ _Qp � M _Qp, and we can write
the Hamiltonian as

H pm; qm� � � 1

2M

XN

p� 1

P2
p �

M

2

XN

p� 1

�wxmp�2 Q2
p : �5:8�

The quantum motion of the ions can now be considered by introducing the operators:

Qp ! Q̂p � i

������������������
�h

2Mwxmp

s
�âp ÿ âyp� ; �5:9�

Pp ! P̂p �
������������������
�hMwxmp

2

r
�âp � âyp� ; �5:10�
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where Q̂p and P̂p obey the canonical commutation relation �Q̂p; P̂q� � i�h�pq and the creation
and annihilation operators âyp and âp obey the usual commutation relation �âp; âyq� � �pq. We
shall use the interaction picture to perform calculations of the effect of laser fields on the
trapped ions. The unperturbed Hamiltonian describes the free evolution of the internal states
of the ions and the oscillations of the ions' normal modes. The effect of the laser field will
be described by an interaction Hamiltonian introduced below. The interaction picture opera-
tor for the displacement of the m-th ion from its equilibrium position is:

q̂m�t� �
XN

p� 1

b�p�m Q̂p�t� �5:11�

� i

�����������������
�h

2MwxN

r XN

p� 1

s�p�m �âp eÿiwxmpt ÿ âyp eiwxmpt� ; �5:12�

where the coupling constant is defined by

s�p�m � b�p�m

�����������
N=mp

q
: �5:13�

For the CM mode �p � 1�, which is the most important mode for quantum computation,
s�1�m � 1 for all ions m � 1; 2; . . . N.

5.2. Laser-ion Interactions

5.2.1. ªVº Type Operations: Single Qubit Interactions

There are two different ways of performing quantum computational laser operations on the
qubits formed from two-level ions. The most simple is the single frequency Rabi oscilla-
tions between two states. If the two level system interacts with a monochromatic field
precisely tuned to the transition frequency for the two levels, the population will oscillate
back and forth between the two levels (fig. 3.a) [47, 48]. A long-lived two level system is
required to make a qubit suitable for quantum computation, and so atomic levels with
dipole-forbidden transitions are the most suitable. An example of such a dipole forbidden
transition is the 729 nm 4 2S1=2 to 3 2D5=2 transition in Ca� (fig. 2), which has a natural
lifetime of about 1.06 seconds (see ref. [49] for more details and references to the sources
of atomic data).

The other method of performing manipulations on the qubits of an ion trap quantum
computer is to use Raman transitions (fig. 3.b). This technique was used by the Boulder
group in their experimental realization of a quantum logic gate using a cold trapped ion
[10]. Two lasers, traditionally named the ªpumpº and the ªStokesº beams, are tuned so
that population from one level is pumped to some intermediate virtual level by one laser,
and then immediately brought back down from the virtual level to a different atomic state
by the second laser [50, 51]. This method has some advantages over the single laser
technique, because it is resilient against phase fluctuations of the addressing laser and
because one can use two states with very long decay times, for example the two mag-
netic sub-levels of the 4 2S1=2 level of Ca�. However it also has the complication that
one needs to control precisely the position and direction of two laser beams rather than
the one required for the first method. It may be that for the experimental devices now
under construction, which will consist of only a few qubits, the first technique will prove
superior.
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The interaction picture Hamiltonian describing the resonant interaction of a two level
system with a laser can be written as follows:

ĤI � i�hW0

2
exp �i Dt� j0i h1j � h:a: ; �5:14�

where h.a: stands for the Hermitian adjoint of the immediately preceding term. The Rabi
frequency W0 is defined by

W0 �
eE
�h

�����������
A

cak3

r
b (single laser)

e2A
�h2cak3

EpEs*
4� b (Raman) :

8>><>>: �5:15�

In these formulas, b is a coefficient of order 1 which depends on the laser polarizations and
the quantum numbers of the states involved (for details see [49, 51]); E is the complex
electric field strength for the single laser; Ep and Es are the complex electric field strengths
of the pump and Stokes lasers respectively; A and k are, in the single laser case, the Ein-
stein A coefficient and the wavenumber for the qubit transition, and in the Raman case, the
A coefficient and the wavenumber for the transition from the two qubit levels j0i and j1i to
the third detuned level, j2i (see fig. 3) 4�; d is the detuning of the virtual level from level
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Figure 2: The lowest energy levels of 40Ca� ions, with transition
wavelengths and lifetimes listed. See [49] for references to the data.

4� If j0i and j1i are magnetic sublevels of the same level, then the value of A will be the same for
them both.



j2i. The detuning, D, which appears in eq. (5.14) is given by the following formula:

D � w0 ÿ wL single laser

w0 ÿ �wp ÿ ws� Raman ;

(
�5:16�

where w0 is the angular transition frequency for the j0i to j1i transition, wL is the angular
laser frequency (single laser case), and wp and ws are the pump and Stokes angular fre-
quencies respectively (Raman case) 5�.

If we assume that the detuning in eq. (5.14) is zero, and that only the states j0i and j1i
can become populated, i.e. the wavefunction for the qubit is jw�t�i � a�t� j0i � b�t� j1i,
then the equation of motion,

i�h
@

@t
jw�t�i � ĤI jw�t�i ; �5:17�

has the following solution:

a�t�
b�t�

� �
� cos �q=2� ieij sin �q=2�

ieÿij sin �q=2� cos �q=2�
� �

a�0�
b�0�

� �
; �5:18�

where q � jW0j t and j � arg fW0g.
Thus, by directing an on-resonance laser pulse at a particular ion, an arbitrary superposi-

tion of the j0i and j1i states can be created from the j0i state by carefully controlling the
duration and phase of the pulse. The effect of such a pulse, which we will refer to as a ªVº
pulse (following the nomenclature of ref. [9]), on the m-th ion's internal states is repre-
sented by the single-ion unitary operation, V̂m q; j� �,

V̂m q; j� � :
j0im ! cos q=2� � j0im ÿ ieij sin q=2� � j1im
j1im ! cos q=2� � j1im ÿ ieÿij sin q=2� � j0im

: �5:19�

For example, q � p is a p-pulse, which changes j0i into j1i and vice-versa (with a p
phase shift):

V̂m p; p=2� � :
j0im ! j1im
j1im ! ÿj0im

: �5:20�
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Figure 3: A schematic illustration of (a) single laser and (b) Raman qubit addressing and control tech-
niques.

5� We have ignored the A. C. Stark shifts of the two qubit levels caused by the two Raman lasers.
This effect will mean that the on-resonance condition will not be exactly D � 0, and there will be a
small phase shift in the execution of CNOT gates as a result. This is discussed in detail in ref. [51].



Similarly, the operation V̂ p=2; p=2� �, a p=2 pulse, creates equally-weighted superpositions
of the basis states. A 2p pulse produces a sign change of the state in the same way that a
rotation of 2p produces a sign change of the wavefunction of a spin-1/2 particle; a 4p
pulse returns the ion to its original state.

However, these operations all have the form of a rotation, whereas quantum logical op-
erations are required that have the form of a reflection, such as the NOT operation:

NOT :
j0im ! j1im
j1im ! j0im

�5:21�

and the single-bit Hadamard operation:

R̂ :
j0im ! j0im � j1im� �= ���

2
p

j1im ! j0im ÿ j1im� �= ���
2
p : �5:22�

We can perform these operations with the aid of an auxiliary level, jauxi. The auxiliary
level, which is a vital ingredient of Cirac and Zoller's scheme, is some third state of the ion
which will interact with j0i in precisely the same manner as j0i interacts with j1i, but
which does not interact at all with j1i. For example, we can use the 4 2S1=2; MJ � 1=2 and
the 3 2D5=2; MJ � 3=2 states of Ca� as j0i and j1i for our qubits. The auxiliary level
can then be the 3 2D5=2; MJ � ÿ1=2 state. We can perform operations between j0i and j1i
using right-hand circularly polarized light. If we switch to left circularly polarized light we
can perform operations between j0i and jauxi, without changing the state of j1i. The uni-
tary operations involving j0i and jauxi will be denoted as follows:

V̂ �aux�
m q;j� � :

j0im ! cos q=2� � j0im ÿ ieij sin q=2� � jauxim
jauxim ! cos q=2� � jauxim ÿ ieÿij sin q=2� � j0im

�5:23�

Using this operation V̂ �aux�
m in conjunction with V̂m, we can perform the NOT and single bit

Hadamard transforms on the m-th qubit as follows:

NOTm � V̂ �aux�
m 2p; p=2� � V̂m p=2; p=2� � �5:24�

R̂m � V̂ �aux�
m 2p; p=2� � V̂m 3p=2; p=2� � : �5:25�

5.2.2. ªUº Type Operations: Interactions with the Quantum Bus Channel

To describe the ability of the laser beam to excite or annihilate quanta of the ions' collec-
tive vibrations, it is necessary to modify the interaction Hamiltonian (5.14) by taking into
account the spatial variation of the the laser field as follows:

E ! E�̂rm� � E�r0
m � exq̂m�

� E0 � q̂m
@E

@x

� �
0

; �5:26�

where r0
m is the equilibrium position of the m-th ion, ex is the unit vector in the axial �x�

direction, q̂m is the quantum operator describing the vibration of the m-th ion (see 5.12)
and the subscript 0 denotes a term which has been evaluated at the equilibrium position of
the ion. For simplicity, we shall neglect all of the phonon modes except for the CM mode
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�p � 1�. We therefore obtain the following modified form of the interaction Hamiltonian:

ĤI � i�hW0

2
exp �i Dt� j0i h1j

� i�hW1

2
exp �i Dt� j0i h1j �â exp �ÿiwxt� ÿ ây exp �iwxt�� � h:a: �5:27�

Here W0 is given by eq. (5.15), and

W1 �
�����������������

�h

2MwxN

r
@W0

@x

� �
0

; �5:28�

where the partial derivative acts only on the spatial variations of the electric fields. For
plane waves, which will be a good approximation for the focal regions of Gaussian laser
beams in the vicinity of an ion, W1 is given by the formula

W1 � h����
N
p W0 ; �5:29�

where h is the Lamb-Dicke parameter defined by:

h �

��������������
�h

2Mwx

q
kL � ex (single laser)��������������

�h

2Mwx

r
�kp ÿ ks� � ex (Raman)

8>>><>>>: �5:30�

kL, kp and ks being, respectively the wavevectors of the single laser, the pump laser and the
Stokes laser.6�

In order to realize quantum logic gates of the type devised by Cirac and Zoller, one sets
the detuning, D � ÿwx. In this case, ignoring the off-resonant terms, eq. (5.27) becomes

ĤI � ÿi�hW1

2
ây j0i h1j � h:a: �5:31�

This Hamiltonian is equivalent to that introduced by Jaynes and Cummings to describe the
interaction of a two-level system with a single quantized harmonic oscillator [53]. If we
assume that we are limited to two possible states: j1i 
 j0 phononsi and j0i 
 j1 phononi,
which we shall denote as j1; 0i and j0; 1i respectively, the wavefunction for the ion is
jw0�t�i � c�t� j0; 1i � d�t� j1; 0i. The equation of motion (5.17) can then be solved:

c�t�
d�t�

� �
� cos �q0=2� i eij0 sin �q0=2�

i eÿij0 sin �q0=2� cos �q0=2�
� �

c�0�
d�0�

� �
; �5:32�

where q0 � jW1j t and j0 � arg fW1g. Thus we have interactions which change the CM
phonon vibrational mode as well as the ions' internal levels in a controllable manner. We
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6� The expression (5.15) is an approximation which is valid if h=
����
N
p � 1. In general the expres-

sion for W0 depends on the number of phonons in the system; Monroe et al. recently pointed out that
this fact allows one, in principal, to realize quantum gates more simply than by using the Cirac and
Zoller auxiliary level scheme [52].



shall refer to such laser interactions as ªUº type pulses (again, following the nomenclature
of ref. [9]). The following operation can be realized by these interactions with precise con-
trol of the pulse duration and laser phase:

Ûm q0;j0� � :
j0; 1im ! cos q0=2� � j0; 1im ÿ i eij0 sin q0=2� � j1; 0im
j1; 0im ! cos q0=2� � j1; 0im ÿ i eÿij0 sin q0=2� � j0; 1im

�5:33�

A similar transform Ûaux
m can be defined between the j0; 1i state and the jaux; 0i state. It is

important to emphasize that, because the phonon modes are collective oscillations, when
the m-th ion acquires an amplitude in the j1 phononi state, then all of the other ions in the
trap also acquire an amplitude in the j1 phononi state. This amplitude is dependent on the
state of the m-th ion. Thus by means of interaction with the CM phonon mode, the internal
state of any ion in the trap can be changed conditionally on the internal state of any other
ion. The two-level system j0 phononsi; j1 phononif g can be considered as an additional
qubit that acts as a quantum bus channel, that can be used to transfer quantum information
between different ions in the quantum register.

From these basic building blocks, a CNOT gate between ions c (ªcontrolº) and t (ªtar-
getº) can be constructed from the sequence of five laser pulses

CNOTct � V̂t�p=2; p=2� Ûc p; 0� � Ûaux
t 2p; 0� �Ûc p; 0� � V̂t�p=2; p=2�: �5:34�

5.3. Readout

Once the computational state manipulations required are completed, the result must be read
out, which means that the state of each qubit must be measured. This can be accomplished
using the quantum jump technique, which is relatively straightforward when using the sin-
gle laser qubit scheme. For example, with Ca� ions, each qubit consists of a sub-level of
the 4 2S1=2 ground state, j0i, and a sub-level of the 3 2D5=2 metastable excited state, j1i,
(see fig. 2). This qubit can be interrogated with the laser tuned to the 4 2S1=2 to 4 2P1=2
dipole transition at 397 nm. If the ion radiates, its state has been collapsed to the j0i state,
whereas if it remains dark then its state has collapsed to the j1i state. The 4 2P1=2 level can
also decay to the 3 2D3=2 level, and so a pump-out laser at 866 nm will also be required in
order to prevent population being trapped in that metastable level.

With the Raman scheme, readout is a little more complicated. Assume that j0i and j1i are the
MJ � ÿ1=2 and MJ � �1=2 sublevels of the 4 2S1=2 ground state, respectively. The most
straightforward method of performing the readout in these circumstances is to apply a p pulse
from the j1i (or j0i) state to a sub-level of the 3 2D5=2 state, and then use a laser at 397 nm to
observe fluorescence (if any) due to population in the j0i (or j1i) state, as in the single laser
scheme. Alternatively, a sÿ circularly polarized laser at 393 nm can excite population from j0i
state to the MJ � ÿ3=2 sub-level of the 4 2P3=2 level, which will decay by dipole emission back
to j0i. One can avoid exciting population from the j1i level by applying a sufficiently strong
magnetic field that the transition from this state to the 4 2P3=2 MJ � ÿ1=2 sub-level is shifted off
resonance by the Zeeman effect (a magnetic field of 200 Gauss should be sufficient for this pur-
pose). However, the 4 2P3=2MJ � ÿ3=2 sub-level can also decay to both the 3 2D3=2 and 3 2D5=2
levels, and pumping out the population trapped in these states might lead to difficulties.

5.4. Tolerances and Laser Requirements

5.4.1. Pulse Durations and Standing Waves

In deriving the formulas that describe the effects of laser pulses on the qubits, we have
made various assumptions which allow us to discard off-resonant terms in the Hamiltonian.
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The criteria for making these approximations place constraints on the experimental para-
meters, in particular, the duration of the various laser pulses required to perform operations.

For the V-type pulses, we have neglected terms involving coupling to phonon modes.
These can be neglected provided that �W1=wx�2 � 1. Using eq. 5.30, and the fact that the
duration of a V-type p pulse is tV � p=W0, we find that the pulse duration must obey the
following inequality:

tV � ph����
N
p

wx

: �5:35�

For 10 Ca� ions in a trap with a 2p � 500 kHz axial angular frequency, eq. (5.37) implies
that tV � 7:5 nsec for the single laser scheme and tV � 14 nsec for the Raman scheme.
This condition will become easier to satisfy as the number of ions N grows large.

For U-type pulses, we have neglected the terms in the interaction Hamiltonian (5.29)
which give rise to ªdirectº transitions, i.e. those that do not involve the creation or annihila-
tion of a phonon. Using a similar argument, one can show that the duration of a U-type p-
pulse must obey the following inequality:

tU � p
����
N
p

hwx
(traveling wave) : �5:36�

Thus if we have a large number of ions in our trap, the duration of the sideband detuned U
pulses must become very long. Using the same example that we quoted for the V pulses,
i.e. 10 Ca� ions in a 2p � 500 kHz trap, (5.38) implies that tU � 130 msec for the single
laser scheme and tU � 72 msec for the Raman scheme.

A method by which these pulse durations can be made shorter has been suggested by
Cirac and Zoller and co-workers ([9, 54]). If one were to apply the laser field in a config-
uration such that W0 were zero, but W1 was non-zero, then the direct transition terms in the
Hamiltonian (5.29) would be zero. For example, the single laser could be used in a stand-
ing wave configuration such that one has a node at the location of the ion one is trying to
address 7). In these circumstances, one would still have to worry about the possibility of
exciting the ªwrongº phonon modes, and it can be shown [49] that this places the follow-
ing constraint on the duration of U-type p pulses:

tU � 2:6p

wx
(standing wave) : �5:37�

This has the advantage that the duration of U-type pulses is independent of the number
of ions in the trap. Again using the example of 10 Ca� ions in a 2p � 500 kHz trap, the
durations of the U-pulses must be tU � 2:6 msec when we have standing waves. However
there are considerable technical difficulties in arranging a laser beam, which must have a
component of its wavevector parallel to the trap axis, in a standing wave configuration,
with all of the ions either at a node or an anti-node. Thus for the small number of ions
which will be involved in the first generation ion-trap quantum computers, it seems that
the practical problems associated with building an optical system that allows us to ad-
dress the ions with standing waves will outweigh the advantages of having shorter pulses.
However, they will probably be required if we are to have a computer with more than a
few qubits.
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5.4.2. Laser Power Requirements

The expressions for the Rabi frequencies, eqs. (5.15) and (5.30), relate the rate of flipping
between the two levels j0i and j1i to the electric field strength of the lasers. From these
formulas, we can derive an expression relating the laser power to the duration of the var-
ious pulses. This is important information to know when determining the specifications of
the laser system which must be built. The power in a Gaussian laser beam is given by (ref.
[55], eq. 14.5.27, p. 488)

P � ce0

4
pw2

0 jEj2; �5:38�

where c is the velocity of light, e0 is the permittivity of the vacuum and w0 is the 1=e2

radius of the focal spot. On substituting from eq. (5.28), we find the laser power is given
by the following expression:

P �
w2

0wLwxNM
At2

U

(single laser)

w2
0w2

Ld
cAtU

����������������
NM�hwx

p
(Raman)

8>>><>>>: : �5:39�

We have assumed that, in the Raman case, the pump and Stokes lasers have approximately
the same power. In these formulas, tU is the duration of a U-type p-pulse, i.e. tU � p=W1;
the other symbols have the same meaning as given above (see the paragraph following
eq. (5.15)). For 10 Calcium ions, assuming a pulse duration tU of 5 msec (which is com-
patible with the minimum pulse duration when standing waves are employed), a laser spot
size w0 of 10 mm, an axial frequency wx of 2p � 500 kHz, and a Raman detuning d of
2p � 100 MHz, the power required for the single laser scheme is 25 mW, compared to a
required power of 0.11 mW for the Raman scheme. Longer pulses, which would be required
if standing waves are not used, would need less power.

5.4.3. Error Rates and Fault Tolerant Quantum Computing

In the two years since Cirac and Zoller's original proposal was published, there have been
several calculations of the limitations of the capabilities of such devices due to various
decoherence effects [23, 24, 25]. While these investigations are useful for identifying theo-
retically the various important decoherence processes, none of them take into account the
recent breakthroughs in the realm of fault tolerant quantum computation [11, 12]. As men-
tioned in the introduction, it has been demonstrated that, provided quantum gates can be
performed within a certain threshold degree of accuracy (the most optimistic estimate of
which is �10ÿ6), then in principle arbitrarily large quantum computations can be per-
formed accurately. This sets an obvious figure of merit for quantum computation technol-
ogy, namely, the expected probability of error in one quantum gate.

For trapped ion quantum computers using the single laser addressing scheme, there are
two principal fundamental causes of error which we must examine: spontaneous emission
from the upper level of the qubit, and breakdown of the two-level system. The first sug-
gests that we should use the shortest possible laser pulses, so that the gate operation is
completed quickly, before the upper level can decay. The second type of error is reduced
by using very low laser powers, and so long duration laser pulses should be the best. Thus
there is an optimum situation when these two effects balance. If we then use the limiting
cases given by eqs.(5.38) and (5.39), we obtain the following expression for the minimum
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possible error probability per CNOT using Ca� ions:

e � 8:9 � 10ÿ6N1=3 (standing wave)
3:6 � 10ÿ5N1=2 (traveling wave) :

�
�5:40�

Thus although the use of standing waves will reduce the error significantly, it still does not
appear that it will be possible to meet the existing accuracy thresholds using single laser
addressing. (Other species of ion give similar results.) This, however, does not imply that
quantum computation experiments using single laser addressing are without merit; discount-
ing the possibility that further theoretical advances may reduce the error threshold, the
single laser system will still be useful as a experimental device for performing limited gate
operations on a dozen or so qubits, which will allow one to confirm both the practicality of
quantum computation with cold trapped ions, as well as aspects of the theory of fault
tolerant quantum computation.

Using the Raman system, the fundamental source of error we have to worry about is
spontaneous emission from the upper level j2i of the three level system (see fig. 3.b). As
the average population in this level and the rate at which the quantum gate is performed are
both proportional to the laser power, the error rate can be shown to be independent of the
duration of the laser pulses [71]. One can minimize this error by using the largest possible
Raman detuning d and the smallest possible axial frequency wx. However, when one is
detuned from one level by a large amount, one can come into resonance with another level;
hence, when calculating the error, all of the ion's levels must be taken into account. The
smallest practical trap frequency can be estimated to be 100 Hz, although the experimental
problems associated with cooling at this frequency are more than a little daunting. In this
case, the error per gate for Ca� ions is

e � 1:3 � 10ÿ8N1=2 : �5:41�
This implies that in theory it may be possible to perform reliable quantum computations,
with errors per gate of the order of 10ÿ6, with �100 Ca� ions. Similar calculations give
even larger numbers (�5000) for Be� ions. The estimates should be viewed with a great
deal of caution: throughout the work done on fault tolerant techniques, the assumption was
made that the error rate per gate was independent of the number of qubits, and so large
numbers of qubits could be used without undue penalty. When the error rate is dependent
on the number of qubits, as is the case here, the results are no longer valid. However, they
do suggest that some optimism regarding the future of ion trap quantum computation may
not be unwarranted.

6. Experimental Considerations

6.1. Choice of Ion

There are three requirements which the species of ion chosen for the qubits of an ion trap
quantum computer must satisfy:

1. If we use the single laser scheme, the ions must have a level that is sufficiently long-
lived to allow some computation to take place; this level can also be used for sideband
cooling.

2. The ions must have a suitable dipole-allowed transition for Doppler cooling, quantum
jump readout and for Raman transitions (if we chose to use two sub-levels of the ground
state to form the qubit).

3. These transitions must be at wavelengths compatible with current laser technology.
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Various ions used in atomic frequency standards work satisfy requirement 1: A long-
lived transition will have a very narrow spectral line which can be exploited for that appli-
cation. Examples are Hg�, Ca� or Ba� (which have quadrupole allowed transitions in the
optical, near infrared or near ultraviolet regions of the spectrum, with lifetimes ranging
from hundreds of milliseconds to several seconds; for details, see [49]). An even more
exotic possibility is Yb� which has an optical electric octupole transition with a lifetime of
about 10 years [56]. Of these ions, Ca� offers the advantages of transitions that can be
accessed with titanium-sapphire or diode lasers and a reasonably long-lived metastable
state. The relevant energy levels of the A � 40 isotope are shown in fig. 2. The dipole-
allowed transition from the 4 2S1=2 ground state to the 4 2P1=2 level with a wavelength of
397 nm can be used for Doppler cooling and quantum jump readout. The 732 nm electric
quadrupole transition from the 4 2S1=2 ground state to the 3 2D3=2 metastable level (lifetime
� 1:08 sec) is suitable for sideband cooling. In the single laser computation scheme, the
qubits and auxiliary level can be chosen as the electronic states

j0i � j4 2S1=2; Mj � 1=2i; j1i � j3 2D5=2; Mj � 3=2i;
jauxi � j3 2D5=2; Mj � ÿ1=2i �6:1�

The V̂ and Û operations can be driven using left-handed circular polarized 729 nm radia-
tion, while the V̂ aux and Ûaux operations require right-handed circular polarization.

This ion can also be used for Raman type qubits, with the two Zeeman sublevels of the
4 2S1=2 ground state forming the two qubit states j0i and j1i, with one of the sublevels of
the 4 2P1=2 level being the upper level j2i. As mentioned above, a magnetic field of 200
Gauss should be sufficient to split these two levels so that they can be resolved by the
lasers. The pump and Stokes beams would be formed by splitting a 397 nm laser into two,
and shifting the frequency of one with respect to the other by means of an acousto-optic or
electro-optic modulator. This arrangement has a great advantage in that any fluctuations in
the phase of the original 397 nm laser will be passed on to both the pump and Stokes
beams, and will therefore be canceled out, because the dynamics is only sensitive to the
difference between the pump and Stokes phases. One problem in realizing the Raman
scheme in Ca� is the absence of a third level in the ground state that can act as the auxili-
ary state jauxi required for execution of quantum gates. This difficulty could be removed
by using the alternative scheme for quantum logic recently proposed by Monroe et al.
[52]; alternatively, one could use an isotope of Ca� which has non-zero nuclear spin, there-
by giving several more sublevels in the ground state due to the hyperfine interaction 8�;
other possibilities that have been suggested for an auxiliary state with 40Ca� in the Raman
scheme are to use a state of a phonon mode other than the CM mode [58] or one of the
sublevels of the 3 2D doublet [59].

6.2. The Radio Frequency Ion Trap

Radio-frequency (RF) quadrupole traps, also named ªPaul trapsº after their inventor, have
been used for many years to confine electrically charged particles [60] (for an introduction
to the theory of ion traps, see refs. [61, 62]). The classic design of such a Paul trap has a
ring electrode with endcap electrodes above and below, with the ions confined to the en-
closed volume. A single ion can be located precisely at the center of the trap where the
amplitude of the RF field is zero. But when several ions are placed into this trapping field,
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8� The only such stable isotope of Calcium is 43Ca, which has nuclear spin 7/2 and a natural
abundance of 0.135%. Enriched samples are available at a cost of $ 441 per mg [57].



their Coulomb repulsion forces them apart and into regions where they are subjected to
heating by the RF field. For this reason, in our experiment ions, are confined in a linear RF
quadrupole trap. Radial confinement is achieved by a quadrupole RF field provided by four
1 mm diameter rods in a rectangular arrangement. Axial confinement is provided by DC
voltages applied to conical endcaps at either end of the RF structure; the endcap separation
is 10 mm. The design of the trap used in these experiments is shown diagrammatically in
Figs. 4 and 5. An image of trapped ions is shown in Fig. 6.

The main concerns for the design are to provide sufficient radial confinement to assure
that the ions form a string on the trap axis after Doppler cooling; to minimize the coupling
between the radial and axial degrees of freedom by producing radial oscillation frequencies
significantly greater than the axial oscillation frequencies; to produce high enough axial
frequencies to allow the use of sideband cooling [63]; and to provide sufficient spatial
separation to allow individual ions to be addressed with laser beams.

6.2.1. Radial Confinement

A sinusoidal voltage with a DC offset, F � FDC ÿFRF cos �wRFt�, is applied to two oppo-
site rods of the RF structure while the other two are grounded. The potential near the center
of the trap is

F � F0
z2 ÿ y2

2r2
0

; �6:2�

where r0 is a constant dependent on the distance from the trap axis to the RF rods and y
and z are the distances from the trap axis along the y and z axes, respectively (see fig. 1).
For this trap, r0 � 1:4 mm.
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Figure 4: (a) Side view diagram of the linear RF
trap used to confine Ca� ions in these experi-
ments. The endcap separation is 10 mm and the
gap between the RF rods is 1.7 mm. (b) End-on
view of the linear RF trap electrodes.
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a)

Figure 5: (a) Photograph of the trap assembly. (b) Photograph of the assembled ion trap vacuum syst.

b)



The equation of motion for an ion in this time-dependent quadrupole potential is the well
known Matthieu's equation, the solutions of which [64] are parameterized in this case, by
the quantities a � 4eFDC=�Mw2

RFr2
0� and q � 2eFRF=�Mw2

RFr2
0�. For a proper choice of

these parameters, the motion of the ion can be treated by a pseudopotential approach. Here,
the ions are described as moving in the effective quadratic potential

F�eff� � eF2
RF�

2

4Mw2
RFr4

0

; �6:3�

where � �
��������������
y2 � z2

p
is the radial distance from the trap axis. The total motion consists of a

fast ripple superimposed on a slower, larger amplitude oscillation, referred to as the secular
motion, of frequency

wr � eFRF���
2
p

MwRFr2
0

: �6:4�

Typical operating parameters for the trap described are FDC � 0, FRF � 500 Volts, and
wRF � �2p� � 11:5 MHz. This yields a radial pseudowell of 15 eV depth and a secular mo-
tion frequency of wr � �2p� � 5 MHz. Laser cooling of the ions to the Doppler limit im-
posed by the natural linewidth of the 4 2S1=2 ÿ 4 2P1=2 cooling transition will yield a tem-
perature TDop � 85 mK. Comparing this thermal energy with the radial pseudowell depth,
we find that the ions should be confined to within roughly 30 nm of the trap axis after
Doppler cooling.

6.2.2. Axial Confinement

As mentioned above, axial confinement is provided by conical electrodes at either end of
the RF structure. The conical shape allows maximum laser access while providing a large
region at the trap center for which the potential is harmonic. A static bias voltage of up to
500 V is applied to both endcaps.

When the ions are sufficiently cold, they will crystallize to form a line or ªstring of
pearlsº. In this configuration, the axial force on the m-th ion due to the harmonic binding
potential and the Coulomb force upon it due to all of the other ions is given by the formula

Fm � Mw2
xxm �

XN

n� 1
m 6� n

e2

4pe0

1

�xn ÿ xm�2
; �6:5�
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Figure 6: Image of a string of four trapped
calciums ions. The total length is roughly
80 mm.



where the symbols have the same meaning as in eq. (5.3). The equilibrium positions of the
ions are determined by the set of N equations, Fm � 0; �m � 1; 2; . . . N�. For N � 2 or
N � 3, the equations may be solved analytically; for larger values of N numerical solutions
must be found. For details, see ref. [49]. We find that the minimum inter-ion spacing
(which will occur at the middle of the string) for N ions and axial frequency wx is given
by:

xmin�L� � e2

4pe0Mw2
x

� �1=3
2:018

N0:559
: �6:6�

This relationship is important in determining the extent of ªcross-talkº error in a quantum
computer, due to the focal region of lasers overlapping more than one ion [23]. Figure 7
shows this calculated minimum equilibrium separation as a function of axial oscillation
frequency, which is proportional to the square root of the applied trapping voltage. The
curve is truncated at �2p� � 500 kHz, because, as discussed earlier, we are interested only in
frequencies significantly lower than the 5 MHz secular frequency. Preliminary numerical
model calculations [65] for our trap geometry indicated that an endcap voltage of 150 V
would yield an axial trapping frequency of roughly �2p� � 200 kHz. We have experimen-
tally verified this prediction by observing resonance ion heating through parametric excita-
tion of the axial oscillation of the ions. Small number of ions were trapped and laser
cooled. A weak RF drive was coupled to the DC input applied to the end caps. The fre-
quency was slowly varied and when the applied frequency was equal to 2 � wx a strong
heating of the ion cloud was observed. Figure 8 shows the results of these tests in compar-
ison to the numerical calculations. The solid line is a fit to the data assuming a strict quad-
ratic relation between axial frequency and trap potential. The proportionality constant gives
the shielding of the external D.C. potential by the r.f. trap electrodes. As can be seen, when
there are two ions in the trap a frequency of �2p� � 200 kHz corresponds to an ion separa-
tion of approximately 20 mm. Hence, to resolve the axial motion sidebands on the ion
fluorescence signal and to cool the ions to the vibrational ground level of the axial well,
laser linewidths well under �2p� � 200 kHz will be required. Furthermore, gate operations
involving manipulations of individual ions will require laser spot sizes well under 20 mm.

The linear configuration of the ions will break down if there are too many ions in the
trap. The Coulomb force from ions at the ends of the string will become so great that the
radial confinement will become unstable, and the ions will adopt a zig-zag configuration,
which is susceptible to RF heating. The radial confinement is characterized by a harmonic
frequency wr, given by eq. (6.4). Numerical modeling of the zig-zag breakdown (based on
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Figure 7: Calculated minimum
ion separation as a function of
axial oscillation frequency for
Ca� ions in a harmonic well.
The frequency is proportional to
the applied endcap bias voltage
and is dependent on the trap
geometry.



the instability of the transverse oscillation modes) gives the following formula for the max-
imum number of ions that can reside in a linear configuration:

Nmax � 1:82
wr

wx

� �1:13

: �6:7�

This formula is in general agreement with that previously worked out by numerical model-
ing of cold confined plasmas [27]. In the ion trap used in our experiment, wr � 2p � 5 MHz
and wx can be in the range from 2p � 500 kHz to 2p � 100 kHz. Thus the largest number of
ions that can be stored in this specific system in a linear configuration varies between 24
and 151 ions respectively.

6.2.3. Thermalization of Trapped Ions and Noise Driven Decoherence

We have theoretically investigated the effects of external noise sources (as opposed to trap
RF effects) in regard to ion heating and decoherence [66]. Of the sources considered, which
included mechanical vibrations, black body radiation, and Johnson noise, only the latter
was found to be significant. By use of a result based on a classical model of the trapped
ion [67], Wineland et al. [68] concluded that Johnson noise cannot account for the ob-
served ion heating rate. We have carried the calculation further and have now shown that
the heating rate (which in the case of Johnson noise is roughly equal to the harmonic
oscillator superposition state decoherence rate) can be explained within a reasonable range
of system parameters.

The heating rate is proportional to the effective resistances connected across the trap
electrodes. However, the fact that this resistance depends on the frequency of the noise
fluctuations was not taken into account in [68] where it was concluded that the observed
heating rate in a particular experiment was roughly 10 to 100 times faster than predicted by
the use of the model in [67]. Our primary conclusions are that it is incorrect to use the DC
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Figure 8: Frequency of the axial motion
of an ion cloud in the linear RF trap. The
diamonds are the data points measured by
resonant excitation which are to be com-
pared to the results of an early model cal-
culation for our geometry (solid circles).
The line is a fit to a quadratic relation be-
tween frequency and voltage, the propor-
tionality factor gives the effective strength
of the axial potential due to the shielding
by the RF rods.



resistance of the trap electrode interconnections to determine the heating rate, and that in
many instances, better insight can be obtained through consideration of the noise correla-
tion time. We hope to experimentally investigate the implications of our theoretical work in
the near future.

6.3. Laser Systems

The relevant optical transitions for Ca� ions are shown in fig. 2. There are four different
optical processes employed in the quantum computer; each places specific demands on the
laser system.

The first stage is to cool a small number of ions to their Doppler limit in the ion trap, as
shown in fig. (9.a). This requires a beam at 397 nm, the 4 2S1=2 ÿ 4 2P1=2 resonant transi-
tion. Tuning the laser to the red of the transition causes the ions to be slowed by the optical
molasses technique [69]. In this procedure, a laser beam with a frequency slightly less than
that of the resonant transition of an ion is used to reduce its kinetic energy. Owing to the
Doppler shift of the photon frequency, ions preferentially absorb photons that oppose their
motion, whereas they re-emit photons in all directions, resulting in a net reduction in mo-
mentum along the direction of the laser beam. Having carefully selected the trap para-
meters, many cycles of absorption and re-emission will bring the system to the Lamb-Dicke
regime, leaving the ions in a string-of-pearls geometry.

In order to Doppler cool the ions, the demands on the power and linewidth of the 397
nm laser are modest. The saturation intensity of Ca� ions is �10 mW=cm2, and the laser
linewidth must be less than �10 MHz. An optogalvonic signal obtained with a hollow
cathode lamp suffices to set the frequency. We use a Titanium :Sapphire (Ti :Sapphire) laser
(Coherent CR 899-21) with an internal frequency doubling crystal to produce the 397 nm
light. During the Doppler cooling, the ions may decay from the 4 2P1=2 state to the 3 2D3=2
state, whose lifetime is �1 sec: To empty this metastable state, we use a second
Ti :Sapphire laser at 866 nm.

Once the string of ions is Doppler cooled to the Lamb-Dicke regime, the second stage of
optical cooling, sideband cooling, will be used to reduce the collective motion of the string
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Figure 9: Different transitions between the
levels of Ca� ions required for (a) Doppler
cooling, (b) Resolved sideband cooling and
(c) quantum logic operations and readout. The
single laser addressing technique has been as-
sumed.



of ions to its lowest vibrational level [70], illustrated in fig. (9.b). In this regime, a narrow
optical transition, such as the 732 nm 4 2S1=2 ÿ 3 2D3=2 dipole forbidden transition, develops
sidebands above and below the central frequency by the vibrational frequencies of the ions.
The sidebands closest to the unperturbed frequency correspond to the CM vibrational mo-
tion. If w0 is the optical transition frequency and wx the frequency of the CM vibrational
motion, the phonon number is increased by one, unchanged, or decreased by one if an ion
absorbs a photon of frequency w0 � wx, w0 or w0 ÿ wx, respectively. Thus, sideband cool-
ing is accomplished by optically cooling the string of ions with a laser tuned to w0 ÿ wx.

The need to resolve the sidebands of the transition implies a much more stringent re-
quirement for the laser linewidth; it must be well below the CM mode vibrational fre-
quency of ��2p� � 200 kHz. The laser power must also be greater in order to excite the
forbidden transition. We plan to use a Ti :Sapphire laser locked to a reference cavity to
meet the required linewidth and power. At first glance it would seem that, with a meta-
stable level with a lifetime of 1s, no more than 1 phonon per second could be removed
from a trapped ion. A second laser at 866 nm is used to couple the 4 2P1=2 state to the
3 2D3=2 state to reduce the effective lifetime of the D state and allow faster cooling times.

The transitions required for realization of quantum logic gates and for readout, discussed
in detail in sections 5.2 and 5.3, are shown in fig. (9.c). These can be performed with the
same lasers used in the Doppler and sideband cooling procedures.

There are two other considerations concerning the laser systems for quantum computa-
tion which should be mentioned. To reduce the total complexity of the completed system,
we are developing diode lasers and a frequency doubling cavity to handle the Doppler cool-
ing and quantum jump read out. Also complex quantum computations would require that
the laser on the 4 2S1=2 ÿ 3 2D5=2 computation transition have a coherence time as long as
the computation time. This may necessitate using qubits bridged by Raman transitions as
discussed above, which eliminates the errors caused by the phase drift of the laser.

6.4. Qubit Addressing Optics

In order for the Ca� ion qubits to be useful for actual calculations, it will be necessary to
address the ions in a very controlled fashion. Our optical system for qubit addressing is
shown schematically in fig. 10. There are two aspects to be considered in the design of
such a system: the precise interactions with a single ion and an arrangement for switching
between different ions in the string.

In addition to the obvious constraints on laser frequency and polarization, the primary
consideration for making exact p- or 2p-pulses is control of the area (over time) of the
driving light field pulse. The first step towards this is to stabilize the intensity of the laser,
as can be done to better than 0:1%, using a standard ªnoise-eaterº. Such a device typically
consists of an electro-optical polarization rotator located between two polarizers; the output
of a fast detector monitoring part of the transmitted beam is used in a feedback circuit to
adjust the degree of polarization rotation, and thus the intensity of the transmitted light.
Switching the light beam on and off can be performed with a similar (or even the same)
device. Because such switches can possess rise/fall times on the scale of nanoseconds, it
should be possible to readily control the area under the pulse to within �0:1%, simply by
accurately determining the width of the pulse. A more elaborate scheme would involve an
integrating detector, which would monitor the actual integrated energy under the pulse,
shutting the pulse off when the desired value is obtained.

Once the controls for addressing a single ion are decided, the means for switching be-
tween ions must be considered. Any system for achieving this must be fast, reproducible,
display very precise aiming and low ªcrosstalkº (i.e. overlap of the focal spot onto more
than one ion), and be as simple as possible. In particular, it is desirable to be able to switch
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between different ions in the string in a time short compared to the time required to com-
plete a given p-pulse on one ion. This tends to discount any sort of mechanical scanning
system. Acousto-optic deflectors, which are often used for similar purposes, may be made
fast enough, but introduce unwanted frequency shifts on the deviated beams. As a tentative
solution, we propose to use an electro-optic beam deflector, basically a prism whose index
of refraction, and consequently whose deflection angle, is varied slightly by applying a
high voltage across the material; typical switching times for these devices are 10 nano-
seconds, adequate for our purposes 9�. One such device produces a maximum deflection of
� 9 mrad, for a � 3000 V input. The associated maximum number of resolvable spots
(using the Rayleigh criterion) is of order 100, implying that �20 ions could be comfortably
resolved with negligible crosstalk.

After the inter-ion spacing has been determined, by the trap frequencies, the crosstalk
specification determines the maximum spot size of the addressing beam. For example, for
an ion spacing of 20 mm, any spot size (defined here as the 1=e2 diameter) less than
21.6 mm will yield a crosstalk of less than 0.1%, assuming a purely Gaussian intensity
distribution (a good approximation if the light is delivered from a single-mode optical fiber,
or through an appropriate spatial filter). In practice, scattering and other experimental reali-
ties will increase this size, so that it is prudent to aim for a somewhat smaller spot size, e.g.
10 mm. One consideration when such small spot sizes are required is the effect of lens
aberrations, especially since the spot must remain small regardless of which ion it is de-
flected on. Employing standard ray-trace methods, we have found that the blurring effects
of aberrations can be reduced if a doublet/meniscus lens combination (figs. 11.a) is used
(assuming an input beam size of 3 mm, and an effective focal length of 30 mm). A further
complication is that, in order to add or remove phonons from the system, the addressing
beams must have a component along the longitudinal axis of the trap. Calculations indicate
that an angle of only about 10� between the pump beam and the normal to the ion string is
sufficient for adequate coupling to the phonons. Nevertheless, the addressing optics must
accommodate a tilted line of focus, otherwise the intensity at each ion would be markedly
different, and the crosstalk for the outermost ions would become unacceptable. According
to ray-trace calculations, adding a simple wedge (of �2�) solves the problem (see
Figs. 11.b) and this has been confirmed by measurements using the mock system
(Fig. 11.c).
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Figure 10: Illustration of the laser beam control optics system.

9� Note that while one could in principle control the pulse area merely by swinging the pulse on
and off a given ion, the complications involved with exposing the ion to a varying spatial distribution
make this undesirable.



a)

b)

c)

Figure 11: Ray trace diagram of the laser beam control optics in the focal region; a) doublet meniscus
wedge optics for ion addressing; b) ray-trace diagram in the focal region, showing the ability of the
system to address individual ions; c) normalized profile from an experimental test of addressing optics,
using a 670 nm diode laser and a 5 mm diameter scanning pinhole. In this case the maximum crosstalk
was 0.34%.



Depending on the exact level scheme being considered, it may be necessary to vary the
polarization of the light (e.g., from left- to right-circularly polarized). Because the electro-
optic deflector requires a specific linear polarization, any polarization-control elements
should be placed after the deflector (see, for example, Fig. 10). The final result is a highly
directional, tightly-focused beam with controllable polarization and intensity.

6.5. Imaging System

In order to determine the ions' locations and to readout the result of the quantum computa-
tions, an imaging system is required. Figure 12 shows our current imaging system, which
consists of two lenses, one of which is mounted inside the vacuum chamber, and a video
camera coupled to a dual-stage micro-channel plate (MCP) image intensifier. The first lens
with focal length 15 mm collects the light emitted from the central trap region with a solid
angle of approximately 0.25 sr. The image is relayed through a 110 mm/f2 commercial
camera lens to the front plate of the MCP. This set-up produces a magnification of 7.5 at
the input of the MCP. The input of the 110 mm lens is fitted with a 400 nm narrow band
filter to reduce background from the IR laser.

The dual plate intensifier is operated at maximum gain for the highest possible sensitiv-
ity. This allows us to read out the camera at normal video rate of 30 frames sÿ1 into a data
acquisition computer. Averaging and integrating of the signal over a given time period can
then be undertaken by software. We find this arrangement extremely useful in enabling us to
observe changes of the cloud size or the intensity of the fluorescence with changes of external
parameters like trapping potential, laser frequency, laser amplitude, etc. in real time.

The spatial resolution of the system is limited by the active diameter of individual
channels of the MCP of approximately 12 mm. Since the gain is run at its maximum
value cross talk between adjacent channels in the transition between the first and second
stage is to be expected. This results in the requirement that two incoming photons can
only be resolved when they are separated at the input of the MCP by at least two chan-
nels, i.e. by 36 mm in our case. With the magnification of the optical system of 7.5 this
translates into a minimum separation of two ions to be resolved of 5 mm, which is well
below the separation of ions in the axial well of about 25 mm expected in our experiment.
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Figure 12: Illustration of the ion imaging system.



7. Summary and Conclusions

It is our contention that, currently, the ion trap proposal for realizing a practical quan-
tum computer offers the best chance of long term success. This in no way is intended
to trivialize research into the other proposals discussed in section 4: in any of these
schemes technological advances may at some stage lead to a breakthrough. In particu-
lar, Nuclear Magnetic Resonance does seem to be a relatively straightforward way in
which to achieve systems containing a few qubits. However, of the technologies which
have so far been used to demonstrate experimental logic gates, ion traps seem to offer
the least number of technological problems for scaling up to 10's or even 100's of
qubits.

In this paper, we have described in some detail the experiment we are currently
developing to investigate the feasibility of cold trapped ion quantum computation. We
should emphasize that our intentions are at the moment exploratory: we have chosen
an ion on the basis of current laser technology, rather than on the basis of which ion
which will give the best performance for the quantum computer. Other species of ion
may well give better performance. In particular, as mentioned in section 5, beryllium
ions do have the potential for a significantly lower error rate due to spontaneous
emission, although it is also true that lighter ions may be more susceptible to heating.
Other variations, such as the use of Raman transitions in place of single laser transi-
tions, or the use of standing wave lasers need to be investigated. Our choice of
calcium will allow us to explore these issues. Furthermore, calculations suggest that it
should be possible to trap 20 or more calcium ions in a linear configuration and
manipulate their quantum states by lasers on short enough time scales that many
quantum logic operations may be performed before coherence is lost. Only by experi-
ment can the theoretical estimates of performance be confirmed. Until all of the
sources of experimental error in real devices are thoroughly investigated, it will be
impossible to determine what ion and addressing scheme enables one to build the best
quantum computer or, indeed, whether it is possible to build a useful quantum compu-
ter with cold trapped ions at all.
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